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Dedication
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She was a positive and hardworking person to the very last days of her life. We lost
her one and a half years before I started at the University. If she had not passed on

her super powers to me, I wouldn’t have had the powers to hand in a Master
Thesis, maybe not even to start at the University.

I’m very proud of my work.
Til dig Mor
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Resume
IT- og cybersikkerhed bliver i stigende grad en større og større bekymring. Det er es-
timeret at i 2020 der vil den årlige omkostning for cyberforbrydelser overstige 1 billion
dollars totalt pr år. Imidlertid har de nuværende operative styresystemer der bruges til
at beskytte data, brugere og tjenester, deres oprindelse og kernedesign fra styresystemer
fra 1980’erne. Trods at cybersikkerhed som koncept først blev introduceret i 1999, for-
ventes det stadig at de nuværende styresystemer er sikre. Nuværende styresystemer gør
primært brug af “access control lists” til at håndtere sikkerheden, selvom at det er kendt
at den “capability”-baseret tilgang kan tilbyde en større sikkerhed. Nuværende systemer
har også “super-bruger designet”, hvor en super bruger altid har tilladelse til alting. Der
stilles derfor spørgsmålstegn ved sikkerheden af nuværende styresystemer og ACRYLICS
foreslås som et nyt kernedesign for styresystemer. ACRYLICS er et komplet “capability”-
baseret system og har et integreret kryptografisk filsystem, som også forsikre at den fysiske
gemte data er gemt sikkert, selv når systemet er slukket. ACRYLICS’ sikkerhed er under-
forstået af at følge opsætninger fra topmoderne forskningsresultater som er bevist sikre.
Gennem definitionen af fire sikkerhed niveauer, bliver ACRYLICS vist til at være mere
sikker end nuværende styresystemer og det forklares hvorfor at det hævdes at det er de
nuværende styresystemers kernedesign der gør dem sårbare. En reference implementation
af ACRYLICS er konstrueret og designet af ACRYLICS er vist til at virke i praksis.

Abstract
IT- and cyber security are continuously becoming a greater concern. It is estimated that in
2020 losses due to cybercrimes exceeded a total of 1 trillion dollars pr. year. However, the
current operating systems used to protect data, users and services, have their roots and
core design from operating systems designed in the 1980’s. Despite Cyber Security as a
concept only being introduced in 1999, we still expect the current operating systems to be
secure. Current operating systems primarily rely on access control lists for security, even
though it is known that a capability-based approach offers more security. Current systems
also have the ”super-user design”, where a super user always has permission to everything.
The security of current systems core design is questioned and ACRYLICS is proposed as
a new core design for operating systems. ACRYLICS is a completely capability-based
system, and has an integrated cryptographic file system, which also ensures the capabilities
are stored safely offline. ACRYLICS’ security is implied by it following schemes from state-
of-the-art research results that are proven secure. Through the definition of four security
levels, ACRYLICS is shown to be more secure than current systems and why it is believed
that the current systems core design makes them vulnerable. A reference implementation
of ACRYLICS is constructed, and the ACRYLICS design is shown to work in practice.
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1 Introduction
IT- and cyber security are continuously becoming a greater concern [9]. Almost all systems
are getting connected to the internet and it is a difficult task to protect data, users and
services [80, 14]. It is estimated that in 2020 losses due to cybercrimes exceeded a total
of 1 trillion dollars pr. year [24, 54].

Often it is only cyber security which is mentioned, but IT-security should not be forgotten.
To obtain cyber security, IT-Security is required [78]. If we think about it, how should we
obtain cyber security if the IT-systems we are building on are not secure?

A lot of improvement for cyber security has been seen in recent years, but nothing has
really changed in the operating systems core design since the 1980’s and it is necessary
to take a closer look into the security mechanism in the current operating systems core
design.

The current and most known operating systems have their origin from the late 80’s and
90’s and are often built on existing kernels which are even older. For example the Windows
NT kernel was originally introduced in 1989 and in 1997 Microsoft announced their 64-bit
version of the NT kernel [69]. It is the kernel still used by Microsoft and Windows 10 today.
It has not been clear what the relationship between Windows NT kernel and Microsoft’s
earlier MS-DOS kernel (1981) is. We might have to see them as separate kernels. however,
MS-DOS was build on QDOS (1980), where there is indications that QDOS was a copy of
CP/M (1974) [83, 84] and there are still design decisions made back in the MS-DOS (or
QDOS / CP/M) which are still present in Windows 10 today. If one tries on a Windows
machine to create a file with the name ”con.txt” this will be denied due decisions traced
back to the earlier kernels [82] which is the point here. Linux was announced in 1991 and
the first version was released in 1994 [36], and it is still the same code base that is being
developed today. Linux is built from Minix (1987) and Unix (1970) [12, 72, 71].

It is important to understand the timeline of operating systems and cyber security. The
first publication about cyber security came in 1999 [9, 18], this is later than the initial
development of most of the current systems, but we still expect them to be secure. The
security criteria today is much more sophisticated than it was back then [44, 74].

While developers of course tries to update the current operating system to fit the needs,
this is very challenging because of the complexity, legacy, technical debt and design choice
made very early on [27, 55, 61, 3].

All of the largest known operating systems are primarily using access control list as access
control, even though it is known that the capability approach offers greater security [26,
51]. The early capability systems Hydra [41] and CAP [53] was some of the earliest
capabilities-based systems and there has been ongoing research in capability since, but
Hydra and CAP were never widespread and there has never been a widespread capability
based operating system.

Another security concern for the existing system is the core design where there exists
privileged super-users and non privileged users i.e the systems have a root or admin user
which can access anything and have all permissions to do everything. Such a user often
overrules any security feature and undermines the complete security of the system.

ACRYLICS 1



This raises the questions, if the core design used for operating systems today makes them
vulnerable? and is it possible to design an operating system core which can obtain better
IT-Security and also be proven secure?

To answer the questions the most known operating systems and their state-of-the-art secu-
rity mechanisms are analyzed, including other security mechanisms such as disk encryption
tools, cryptographic file systems and secure hardware modules.

The Security Level model is introduced, and based on the analysis of the current systems
Security Level 1 and Security Level 2 are defined. ACRYLICS’ design will be proposed
as a change in the core design for operating systems, and is reaching the better Security
Level 3. ACRYLICS is based on state-of-the-art research results which proves security
in core functionality of the system. With additional improvements ACRYLICS will reach
the best Security Level 4.

Certain attacks will be discussed and are also the basis for the definition of the security
levels. A reference implementation of ACRYLICS is presented and examples of the running
system are shown, which validates the theory and design works in practice.

1.1 Contribution
In this thesis the security of the core design in the current and most known operating
systems is questioned. By analysis and comparing to the Security Level model, see Figure
1.1, it is shown why the existing systems are vulnerable to certain types of attacks.

With the theory of Lopriore [42] and Damgaard and Dupont [21] combined, ACRYLICS is
proposed with an improved core design for operating systems. ACRYLICS is a password
capability-based system with integrated capability-based cryptographic file system. By
following the schemes in [42] and [21], which are proven to be secure, ACRYLICS’ security
is implied.

The combination of the aforementioned schemes makes it possible to store the capabilities
safely encrypted on the disk. Furthermore the capabilities are needed to read and decrypt
the disk, i.e. the disk cannot be mounted on any system without both a boot-password
and user credentials.

To the best of our knowledge no system has the same core design as ACRYLICS, and
where the capabilities are stored securely physically on a disk when the system is powered
off. Furthermore no system has been observed where encryption truly happens per user
basis, and where shared files are encrypted with keys per file basis, derived from a user
which has an active capability. All happens as default as a part of the core design.

By comparing ACRYLICS in the Security Level model, it is seen that ACRYLICS defend
against the attacks defined in Security Level 2 and achieve the better Security Level 3.
With a couple of improvements, ACRYLICS with improved capability-module reaches
Security Level 4.

A reference implementation has been constructed and shows how the design works in
practice.

To quantify the security of ACRYLICS compared to others, the Security Level model is
used. It consists of four security level as follows:

2 ACRYLICS



Security Level Description Restricts
super-
users

Section

Level 4: ACRYLICS
with improved
Capability-Module

Only vulnerable for attacks
where a valid user and with
active capabilities is malicious.
Only files shared with the mali-
cious user can be compromised.
Because of the capability-based
security, there is no real super-
user, and the system prevents
privilege escalation where a sin-
gle super-user can access any-
thing.

3 5.7.2

Level 3: ACRYLICS Safe against outsiders but
prone to a malicious valid user.
The malicious valid user can
compromise all shared files
in the system with, even files
not shared to the malicious
valid user itself. Because of the
capability-based security, there
is no real super-user, and all
user’s private files are safe.

3 5.7.1

Level 2: Full Disk Encryption Safe against physical outsiders
as long the encryption key is
safe. Is prone to escalation at-
tack due to the super-user de-
sign and the fact that encryp-
tion is happening transparent
and only with one master en-
cryption key.

7 4.4.2

Level 1: No Disk Encryption Vulnerable to multiple attacks.
As the disk is not encrypted
the data can always be read di-
rectly from the physical disk. Is
prone to escalation attack due
to the super-user design. The
system’s disk can be mounted
to another system where the at-
tacker is super-user, hence the
attacker is super user and can
access anything.

7 4.4.1

Figure 1.1: Security Level model. Used to compare of security levels by system type.

1.2 Structure
In Chapter 2 general access control is introduced with focus on the difference between
access control lists and capabilities. Lopriore’s [42] extended password capabilities are
introduced and are later used as a core module in ACRYLICS.

In Chapter 3 the security notation for disk encryption and Damgaard and Dupont’s [21]
disk encryption schemes are introduced. The disk encryption scheme is later used for the
core design of ACRYLICS.

In Chapter 4 the current and most known operating systems will be investigated, analyzed
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and discussed. In particular their state-of-the-art security features will be analyzed. Also
other security tools such as disk encryption tools, cryptographic file systems and the secure
hardware module ”TPM” are analysed and discussed. At the end of the chapter security
levels 1 and 2 are defined according to the Security Level model seen in Figure 1.1. The
analysed systems are compared to the security levels and examples of different known
attacks for each security level are also given.

In Chapter 5 ACRYLICS is designed with the knowledge gained from theory introduced
in chapters 2 and 3, and the analysis in Chapter 4. Later in Chapter 5 two improvements
to the design are proposed, leading to ACRYLICS with improved Capability-Module. At
the end of the chapter Security Level 3 and Security Level 4 are defined. ACRYLICS’
design is discussed and compared to these security levels.

In Chapter 6 ACRYLICS’ reference implementation is introduced and in Chapter 7 we
will see and discuss examples of the running ACRYLICS reference implementation.

4 ACRYLICS



2 Access Control and Capabilities
In this chapter the principle of least privileged and the two main classical access con-
trol models for operating systems; Access Controls Lists and Capabilities [66] are intro-
duced. We will later use capabilities as the foundation of the access management control
in ACRYLICS. In particular we will use the e-capability scheme described in Lopriore [42].
In Section 2.3 we do a recap of the e-capability scheme.

2.1 General Access Control
The main goal for operating system protection is the principle of least privileged [60]. It is
a design principle where only the necessary permissions are given to someone to complete
a task. One of the biggest security problems is when someone or something has more
privileges than needed. Exploits do often take advantage of these ”extra” permissions,
which leads to privilege escalation, where someone obtains more privileges than was meant
to. To prevent privilege escalation a fine grained access control mechanism is needed, such
that only the least amount privileges needed to perform the task can be granted, hence,
using principle of least privilege.

2.2 Privileges: Access Controls List vs. Capabilities
In operating systems access control models are often divided into two main groups; Access
Control Lists (ACL) and Capabilities.

ACL is the far most used approach and is used in the largest known systems like Windows,
Linux and macOS [66, 59]. The advantage with ACL’s is that they are easy to handle. If
we consider a Linux system, the UNIX permissions bits for a file is the access control list,
because it describes who and what access the owner, group and others has to the file, this
makes it easy to see who has which permission. These bits can also easily be modified to
give, revoke or restrict access rights.

Within ACL and access control there are two different policies that can be used; Discre-
tionary Access Control (DAC) and Mandatory Access Control (MAC). In DAC the owner
of an object is the one, which can change and control who has access to an object. Clas-
sically, Windows and macOS used DAC. However, the trend is going toward using MAC,
since it offers better security and more control. MAC are static policies which specify ac-
cess permissions. So only if policies permits a user, the user can access a file or can change
the access rights. Often MAC makes use of ”labels”, for example the labels ”non-secret”,
”secret” and ”top-secret”, then MAC can specify that a user with the ”secret” label can
access ”secret” files and ”non-secret”-files but not the ”top-secret” files. The default in
Windows is DAC but has a MAC layer on top, which checks permission before the DAC
layer. Likewise in macOS, MAC is used invisible to the user to manage access control
behind the scene and only in user space, the user sees the classical DAC. In most Linux
distributions it is pure DAC, but for example with the SELinux patch, a MAC layer can
be enabled.

The other approach is the Capability model [42, 17]. Where subjects (sometimes referred
to as domains, as in [66]) have some capability to some object. The objects could for
example be files, resources or actions. Subjects can for example be users, programs or
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services. A capability is like a key for a locked object, and only with the correct capability
the object can be ”unlocked” and accessed with the given permission. This means that
it is possible to control what action or part of the object that are allowed to be accessed
with a given capability, this gives a very fine grained access control, and is what is needed
to achieve the Principle of least privilege.

One major difference between ACL and capability is where the permissions are stored
design-wise. Either with the object or the subject. In [66] an example of an access matrix
is given where subjects (domains, in the reference) are represented as the rows and the
objects as the column. In ACL the permission is stored with the object, hence represented
with the columns, whereas capabilities are stored with the subjects, hence represented
with the rows. Another example is also nicely expressed in [26].

There are especially three myths about capabilities and capability based systems which
many believe are true.

• ACL systems and capability systems can provide equivalent security

• Capability systems cannot enforce confinement

• Revocation of capabilities cannot be achieved

However, all these myth can be demolished [51] and for example with the confused deputy
problem [31], where a user via a program with admin rights can run unintended commands
as admin, is a classic example of the limitation of ACL and why capability should be
used. The problem has been known since 1988 but there still does not exist a widespread
capability based system today, even though the two research systems from the early 1970’s
Hydra [41] and CAP [53] existed at that time. Hydra and CAP were some of the earliest
systems using capabilities, but were never widespread and since then ACL systems have
taken over, almost completely.

2.3 Extended Password Capabilities
We have now discussed different access management schemes and will now dig into the
e-capability (extended password capabilities) scheme from [42] which is later used in the
design of the capability module in ACRYLICS. All information in the rest of this section
is from [42].

Classically a capability C is defined as a pair of (B,AR), where B is the identifier of
an object and AR is the set of access rights the capability has to that object. Objects
have an object type T , where T defines the access rights for that type. Examples of object
types could be files, resources or actions. Classical capabilities were improved by password
capabilities. A password capability P is a pair of (B,W ), where B is the identifier of a
Capability-Object and W is a password. A different password should exist for any given
access right, so a different W can lead to different access rights. However, the classical
password capability approach can lead to password proliferation, and we need another
improvement to be smarter about this. This is where the extended passwords capabilities
(e-capability) comes into play.

2.3.1 e-capability

An e-capability E is a triple (B,W,R), where B is an object identifier, W is a password
and R is the reduction field.
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The reduction field specifies which access rights the capabilities have and is validated with
W . To specify access rights the reduction field is divided into sub-fields, with a bit for
every access right for the specific object type. To follow the example from [42], we assume
we have an object of type ”File” which has four access rights; EXECUTE, READ, WRITE
and DELETE. The reduction fields have n-1 sub-fields where n is the number of access
rights, and each sub-field has a size of n bits.

So a possible reduction field could look like this, where ri is the sub-fields and e, r, w and
d are the EXECUTE, READ, WRITE and DELETE access rights respectively.

r2 r1 r0
[1,1,1,1]-[1,0,0,1]-[1,1,1,0]
e r w d e r w d e r w d

Figure 2.1: Reduction field example

We calculate the access right as the result of a logical AND operation on the sub-fields:

AR = r2 ∧ r1 ∧ r0 (2.1)

Furthermore it should be noted that a sub-field containing only ones is referred to as a
flat sub-field, e.g. r2 is a flat sub-field in the above example.

In the following subsections we will go into detail about how W is derived from the object’s
password, how to validate if R and W grants the wanted access right on object B, how a
e-capability can be reduced and lastly how revocation mechanisms work.

2.3.2 Password Derivation
We will now see how W is derived. First we should know how an object is created. As
mentioned, objects are of a given object type T and T defines the AR for the object type.
Furthermore the object has an owner password, which is denoted Wown and is a random
generated bit string.

When a new capability object is created, a special owner capability is constructed, denoted
Eown. Eown is given to the subject which is about to create the new capability object.

The special Eown capability consists of all sub-fields being flat, hence the capability has
all AR, which also makes intuitive sense since it is the owner. If we continue the ”File”
example from before, the reduction fields of Eown will look like this.

r2 r1 r0
[1,1,1,1]-[1,1,1,1]-[1,1,1,1]
e r w d e r w d e r w d

Figure 2.2: Reduction field example for owner capability

Beside the reduction field, Eown also has a password. The password is the same password
as the owner password in the correspondent object. This makes sense if we look at the
password-derivation function, see pseudo code example in Listing 2.1.

The derivation function is an iterative process and it will either stop when reaching the
first flat sub-field or have iterated over all sub-fields. In the case where we have Eown

where all sub-fields are flat, the process will immediately stop and the return value will
simply be the object’s owner password.

Let’s now consider the case where a reduced capability has to derive the password W .
Let’s use the reduction field from Figure 2.1. The process will start from the capability

ACRYLICS 7



object’s owner password (e.g. out_password = object’s owner password) and enters the
loop. Since the sub-field in question is not flat, the value of the sub-field is written into
the encryption buffer, the buffer is encrypted with the current value in out_password
and the value in out_password is overwritten with the result of the encryption.

In our particular case the next sub-field is flat, hence we break out the loop and return
the current value in out_password.

1 derive_password(reduction_filed , capability_object)
2 {
3 out_password = capability_object ->password;
4 for (int i = 0; i < reduction_filed ->number_reduction_fields - 1; ++i)
5 {
6 // Check if the subfiled is flat
7 if (flat_subfield(reduction_filed[i]))
8 {
9 break;

10 }
11
12 encryption_buffer = reduction_filed[i];
13
14 // Current out_password used as key to encrypt encryption_buffer
15 out_password = encrypt(encryption_buffer , out_password);
16 }
17 return out_password;
18 }

Listing 2.1: Pseudo code of password derivation

2.3.3 Validation
When a subject wants to access some object with some access right, the capability must
be validated. The validation function, see pseudo code example in Listing 2.2, takes three
inputs; a capability (E), a capability object (B) and the wanted access rights (AR). First
the access rights for E is calculated from E’s reduction field, if AR is in the set of E’s access
rights, the process continues by calling the derive_password-function from Listing 2.1,
otherwise ACCESS_DENIED is returned. With E’s reduction field and the object’s owner
password, another password is derived, this password should match E’s password. If these
match ACCESS_GRANTED is returned, and access is granted for the rights wanted.

1 validate(capability , capability_object , wanted_right)
2 {
3 if (validate_rights(capability ->reduction_field , wanted_right))
4 {
5 calculated_password = derive_password(
6 capability ->reduction_field ,
7 capability_object);
8
9 if(capability_password_compare(

10 calculated_password ,
11 capability_object ->password))
12 {
13 return ACCESS_GRANTED;
14 }
15 }
16 return ACCESS_DENIED;
17 }

Listing 2.2: Pseudo code of password validation
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2.3.4 Reduction
We will now look into reduction of a capability, this means constructing a new capability
with a reduced set of access rights of an existing capability.

Sharing access to objects is very common in access control, however, it should be the case
to only share objects with the exact access rights needed. Recall the principle of least
privileged.

Therefore it is highly relevant that a subject with a capability can produce a new capability
with reduced access rights, and give the new capability to the subject which should have
the access rights. This operation is called a reduction.

The reduction works as follows, see pseudo code example in Listing 2.3: With the reduction
field of the current capability E, we find the first flat sub-field. In that sub-filed the access
rights wanted for the new capability is set to ones and the others to zero. When the sub-
fields are ANDed together as we saw in Equation 2.1, AR is reduced and will only contain
ones where the new access rights were specified. It is important to note that a reduction
can only be a subset of the original AR. Since we are changing the first flat sub-filed, this
means that if the result of the logical AND operation on the sub-fields before is zero, then
it will of course still be zero, no matter if one or zero is placed in a later sub-field.

1 reduction(current_capability , reduced_rights , capability_object)
2 {
3 new_capability = copy(current_capability);
4 masked_subfield = first_flat_subfield(new_capability);
5 if (not_found(masked_subfield))
6 {
7 return ERROR;
8 }
9 masked_subfield = masked_subfield & reduced_rights; // Logical AND

10
11 // Apply next step from the password derivation function
12 encryption_buffer = masked_subfield[i];
13
14 // Use password value from the existing capability as key to encrypt

encryption_buffer
15 // and save the new value as password for the new capability
16 new_capability ->password = encrypt(
17 encryption_buffer ,
18 new_capability ->password);
19
20 return new_capability;
21 }

Listing 2.3: Pseudo code of capability reduction

2.3.5 Class and Revocation
As mentioned earlier a known myth about capabilities is difficulties about access revocation
[51]. We will now see how e-capabilities solve the problem.

Let’s start by introducing the class field. The class field in a capability E is an addition to
what we previously have discussed. The class field contains an integer which is the entry
in a revocation table RT .

It is the object which maintains RT , an entry in the table can be seen as an extra sub-field,
although where the owner of the object can control the values. Changing an entry to all
zeroes would mean that all access for that entry, hence class, has been revoked.
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With the new class and revocation table effective access rights, EAR, is introduced. EAR
is calculated as follows, where RTc is the class entry in the revocation table.

EAR = AR ∧ TRc (2.2)

When a capability is constructed, it has to be specified which class it should belong to,
and the revocation table in the object should be updated correspondingly to the access
rights wanted for that class. It is a constraint for the revocation table that RT0 is an entry
full of ones, meaning that it grants all permissions. For example Eown must be in class 0.

It should also be noted that if a capability is reduced multiple times and remains in the
same class, then a change in the revocation table would affect any capability in the class,
hence solving one of the difficulties that was pointed out in the myths.

The validation mechanism validate_rights used in Listing 2.2 should of course vali-
date with respect to EAR with this addition.
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3 Disk Encryption
In this chapter a general introduction to disk encryption is given and in Section 3.2 we will
go into debt with Damgaard and Dupont’s [21] Disk Encryption Scheme. This scheme is
later used as the fundamental design in ACRYLICS.

3.1 Disk Encryption
Disk encryption is one of the strongest tools to protect data and systems [16]. It has been
used in many ways and at many levels. The most classical levels are encryption on files,
file systems or the whole disk [38].

At file level encryption, only files that have been chosen are encrypted. The files will each
have an encryption key and passphrase. This does not scale very well if many files should
be encrypted.

At file system level, the file system itself offers encryption, this means that the entire file
system is encrypted, hence all files on the file system. It often only requires one passphrase
to get the encryption key of the entire file system. We will see examples of such, like CryFS
or ZFS, in Section 4.3.

The disk level often offers encryption below the file systems. This means that any data sent
to the disk, regardless of the file system, and sometimes regardless of which partition the
data are written to, the data will be encrypted. This is also known as Full Disk Encryption
(FDE). So the file system itself can be of any type, but the data will be encrypted when
it is written to disk, this is of course the main advantage with disk level encryption, since
it happens transparent to the system.

It should be noted that it is not always a good thing with transparent disk encryption
between the file system and the encrypted disk. This can be a security gap which is
addressed later in the analysis in Chapter 4.

There are multiple ways to achieve encryption at disk level. For example tools like Bit-
Locker, FileVault and dm-crypt. Some of them can make use of supported cryptographic
hardware. These will also be further analyzed in Chapter 4.

3.2 Theory for Disk Encryption Scheme
In this section we will go in depth with Damgaard and Dupont’s [21] Disk Encryption
Scheme. The scheme is later used as the core design of ACRYLICS. The scheme defines
four players; each has responsibility for a given part of the system. We will follow the
article and describe the four players: User, File System (FS), Encryption Module (EM)
and Disk.

It is worth to underline that it is a disk encryption scheme, meaning that the File System
can be any file system, and it is EM which handles the encryption. For simplicity some
technical details are omitted in the introduction of the four players.

First some security notation is introduced, then the four players are introduced and finally
we will look at the passive and active security of the scheme.
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3.2.1 Security Notation

The security poofs in Damgaard and Dupont [21] are constructed with respect to the UC
framework [13], where an IdealDisk (ID) is modelled which does what we try to achieve,
and as long as it is not possible for the UC environment to distinguish ID from the real
disk in the protocol with the fours players, this proves the security, because an adversary
would be unable to learn anything about the content on the disk.

Two important security metrics are passive- and active security. In passive security an
adversary can only observe, whereas in active security the adversary is allowed to change
things. Specifically in our case this is whether or not the adversary is allowed to directly
manipulate data on the physical disk.

Disk encryption is often done with symmetric block encryption. Given a key, symmetric
block encryption is a deterministic process and only one block is encrypted at a time. To
circumvent this, Mode of Operations are introduced. In [21] symmetric block encryption
is used with Cipher Block Chaining (CBC).

With CBC an Initialization Vector (IV) is randomly generated and has the same size as
one block. The IV is XORed with the first plaintext block, and the block is encrypted
with the given key, and ciphertext is produced. If there are multiple plaintext blocks, the
output of the first encrypted block will be used to XOR the next plaintext block before
that block is encrypted. This process continues until all blocks are encrypted. As the IV
is needed to decrypt the first block in CBC, the IV is a part of the output, hence the
output is expanded, and the encryption is no longer deterministic and multiple blocks can
be encrypted together.

There exist multiple modes of operation with different approaches. In some of the en-
cryption tools mentioned before it is common to see GCM (Galois/Counter Mode), CCM
(counter with cipher block chaining message authentication code) or XTS (XEX-based
tweaked-codebook mode with ciphertext stealing).

3.2.2 Model

User

The user can call four commands; Initialize, Boot, Read and Write. On Initialize which is
only called once, the User chooses a password and uses the password to construct some
initial data which is sent and written to Disk. On Boot the user sends its password to
EM, EM responds with accept or reject. On Read and Write the user asks FS to either
read or write data to the disk. On a Read either the data or ERROR is returned. On a
Write either OK or ERROR is returned.

File System (FS)

The File System forwards Read and Write commands to EM. The File System handles
where data is stored in logical sectors and gives EM a list of logical sectors where the
data should be written to or read from. EM translates logical sector addresses into phys-
ical sector addresses and encrypts or decrypts respectively. This makes the encryption
transparent for the File System, since the file system only sees and sends unencrypted
data. Since FS only forwards data, it makes no real difference if FS is corrupted. If FS
forwards corrupt data, it will come from a corrupt user, which the scheme cannot not
defend against.
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Encryption Module (EM)
EM handles the encryption and has the encryption key stored in its internal state. EM’s
only source of random input comes from the user via the password, so if the user is corrupt,
no security can be guaranteed. User gives its password to EM on Boot, from which the
encryption key is derived.

As discussed, EM takes Read and Write requests from FS and encrypts or decrypts the
data depending on Read or Write. EM then either sends encrypted data to the Disk for
storage, or gets encrypted data from the Disk, decrypts it, and returns the decrypted data
to FS.

Disk
On Initialize from User, Disk writes the initial data computed by User to the disk. When
Disk is initialized, it servers Read and Write requests from EM, and either returns or
writes some data to the requested sector.

3.2.3 Passive Security
With passive security we want to ensure that no adversary observing the disk will learn
anything about the data.

The first thing observed is that no deterministic encryption algorithm can be passively
secure. This means that it is not possible to have a one-to-one correspondence between
input and output from the encryption. In the deterministic case the same input will always
produce the same output, which gives information away about the input data.

Suppose a deterministic encryption algorithm is used, an adversary could observe a sector
and remember the data for that sector. If later the sector is freed and the adversary
legally gets assigned the sector, the adversary can get a guess of what the observed data
was. More precisely the adversary can choose some plaintext and see what ciphertext ends
up at the sector and compare if the new ciphertext is the same as the earlier observed
ciphertext, hence a deterministic encryption algorithm cannot be secure.

To get around a one-to-one mapping, the output needs to be expanded and a semantic
secure algorithm is needed to obtain passive security. This is done with the CBC mode of
operation as introduced in Subsection 3.2.1.

Theorem 1 from [21] uses the UC framework model to prove that any disk encryption
scheme as specified is passively secure. This is done by simulating reads and writes with
random encrypted data on the ID and real encrypted data in the protocol. Since we
use a semantically security encryption algorithm, by definition, it is not possible for the
adversary to distinguish the random encrypted data from our real encrypted data.

Furthermore a padded CBC continuation scheme is presented in [21] and proved secure in
Theorem 2. However, we will not make use of this particular scheme and will not go into
further details. The padded CBC continuation scheme is used as a way to avoid random
bit generation on the fly. Since ACRYLICS will demand random generated bit on the fly,
this is not relevant for the ACRYLICS design.
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3.2.4 Active Security

With active security we want to obtain that no adversary can modify the disk content
without it being detectable.

Even though semantic security implies passive security. Semantic security is not enough
to obtain active security.

Assume that an adversary observes a user creating a file, which is going to be saved in
some sector. The adversary saves the ciphertext C it sees. If the file at a later point is
deleted, the adversary hopes that it can create a file and get allocated the same sector. As
the adversary can write directly to the disk, the adversary can circumvent the encryption
and write the ciphertext C back to that sector. The adversary can now issue a normal
read command and get C decrypted by the system. Compared to the passive adversary
which could not circumvent the encryption mechanism, the passive adversary could only
issue a normal write and get a guess of the data. Whereas the active adversary can trick
the system to decrypt the original data.

Hash-Tree

To obtain the goal of active security, we need to prevent the adversary from modifying the
disk without being detectable. If we can ensure the integrity of the entire disk, we will be
able to check if some sector has been modified without using the four players properly.

The proposed solution is a Hash-Tree containing Message Authentication Codes (MAC),
where every node has the MAC for its children and the leaves have the MAC for data-
sectors. Some extra sectors are needed to store the tree. The header sector of the extra
sectors will contain the MAC of the Hash-Tree’s root node, which can be verified at boot.
By verifying the root node we know the integrity of the root node is correct. With the
integrity of the root node intact, the MACs for its children are used to ensure the integrity
of the childrens, and so forth down to the leaves. The leaves have the MAC for the data
sectors, and we can therefore validate the integrity of the entire disk if we can ensure the
integrity of the root node. If any integrity check fails, this would mean that a sector has
been modified without using the four players properly, and it is detected.

Theorem 3 in [21] shows that active security is obtained with the proposed Hash-Tree
solution. Theorem 3 also uses the UC framework, ID and the proposed protocol as in
Theorem 1. Additionally a simulator is constructed to be an ideal simulator of the proposed
Hash-Tree solution. The simulator keeps track of MAC values corresponding tag, where
tag represents a historical version of the disk, and is updated on every write. The simulator
behaves much like EM but substitutes random bitstring for CBC mode encryptions. The
tricky part here is the boot sequence, where the simulator must be able to provide a tag
to ID, which EM does not normally do. If the adversary sends a wrong (root, MAC) pair,
the simulator must know by checking if the MAC is consistent with the tag remembered.
If it is consistent then the simulator must be able to provide the consistent tag to ID. If it
is not consistent, the simulator must replace the request with a malformed package which
is rejected by the protocol as normal and the adversary is prevented from changing the
disk content.

By a sequence of scenarios in Theorem 3, it is proven that the UC framework environment
cannot distinguish the first scenario from the last, unless it can forge a MAC, produce a
hash collision or can distinguish chipers from random permutations, hence active security
is obtained.
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Theorem 4 in [21] shows it is possible to implement additional levels below EM, e.g.
caching and journaling, or restructuring layer below EM, where the system will still be
secure. It is important that the layering is strict, and EM must for example not know
anything about the file system, and otherwise, they must follow the protocol as specified.

The security could be improved by remembering a small string from session to session. As
described above the integrity relies on the MAC for the Hash-Tree root node. However the
root note could itself be tampered with. Therefore it is suggested that a small string could
be generated and remembered from session to session. The string has to be generated on
every write, since the MAC changes on every write. On boot, the string can be compared
to the last generated. The drawback is to get a user to keep track of the last generated
string and remember it for next boot.

Security Allowing Some Corruption on EM
So far we have assumed that it is not possible to corrupt EM, but this assumption cannot
be made straight forward. It would require a special uncorruptible unit (RO). RO would
require some fixed secret inside which would make it possible to supply secret material to
EM, hence ensuring that EM cannot be corrupted.

In the real world RO could be compared to the TPM (Trusted Platform Module), which
is a cryptographic coprocessor, which also can store keys secret.

However, it cannot be assumed that a system has this unit and therefore it has to be
considered whether some corruption of EM can be allowed.

It should be clear that if an adversary can take over the EM completely there will be no
security left. In that case the adversary would have access to the encryption keys and can
directly use the keys to get the data.

But what if the adversary is allowed to take a snapshot of EM and then has to leave again
without being allowed to do any modification. Obviously the adversary gets the keys for
the current contents of the disk, leaving the adversary able to decrypt all current content,
however, we can prevent the adversary from getting access to any new information on the
disk after the snapshot was taken. This is done with the improved key scheme:

Improved Key Scheme
So far only one encryption key has been derived from the user’s password, selected initially.

Two things can be improved. Allow the user to change password and use a structure like
the Hash-Tree explained in Subsection 3.2.4 containing encryption keys, where the keys
change on every encryption.

The users can be allowed to change passwords by generating a public key pair, which are
encrypted by the key derived from the user’s password. If the user changes password, then
the public key pair is encrypted with the newly derived key instead. The public key pair is
used to encrypt and decrypt the root node for the hash- and key-tree. The private key is
used to decrypt and the public key to encrypt. The private key is only needed in memory
at boot time, and then it can be forgotten. The public key is kept in memory such that
the root node can be encrypted on every write. Recall that the Hash-Tree is updated on
every write.

The Key-Tree functions the same way as the hash-tree, on every write we generate a
new random key in each node on the path to the leaf and use it to encrypt its children.
This means that on a read, the path is followed to the leaf and the key in a node is
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used to decrypt the child. When reaching the leaf, the key is used on the corresponding
data-sector.

If the adversary has a snapshot of EM, the adversary will only have the keys for the current
content; when a new legit write is made, the tree is changed and the adversary cannot
know the new keys.

However, the adversary knows the public key and can therefore construct new root nodes
and in fact completely change the tree, but the adversary will not be able to boot the
system again, since the adversary does not know the password to derive the private key,
which ensures that the adversary cannot learn more after the snapshot.
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4 Analysis of Currents Systems
In this chapter we will analyze different sets of current state-of-the-art solutions for secur-
ing data, systems and users. In Section 4.1 cryptography hardware support is introduced,
this is done with respect to the Trusted Platform Module (TPM). In Section 4.2 the most
known and relevant operating systems and in particular their security features are ana-
lyzed. Notable also Full Disk Encryption (FDE) tools to Windows (BitLocker), Linux
(dm-crypt) and macOS (FileVault) are introduced. In Section 4.3 some remarks on file
systems are presented, importantly the integrated encryption in ZFS and CryFS. Lastly
in Section 4.4 the findings is discuss and Security Level 1 and Security Level 2 from
the Security Level model are defined, as illustrated in Figure 1.1. The security levels are
later used to compare the security of ACRYLICS to the analysed solutions.

4.1 TPM (Trusted Platform Module)
In this section information is found in the TPM specification [75], in following papers [64,
76] and additional information has been found from websites [58, 68].

The TPM-chip is a Secure cryptoprocessor and can be used for different crypto-operations
like key- and random-number generation, secure storage of keys and most importantly it
is used as the root of trust. TPM 1.2 was the old specification and TPM 2.0 is now the
newest standard. The TPM standard is open source, and therefore all information can be
found in the TPM documentation.

The TPM is a practical example of the RO unit discussed in Subsection 3.2.4. All newer
computers have a TPM chip on the motherboard, except for MacBooks, because Apple
uses their own security chips, which are discussed in Subsection 4.2.2.

Let’s go into some details about the newest TPM 2.0 specification. The main structure in
the TPM 2.0 is build with four hierarchies

• Endorsement Hierarchy

• Storage Hierarchy

• Platform Hierarchy

• Null Hierarchy

The TPM is born with an Endorsement Primary Seed (EPS) which is unique per chip.
EPS is burned into the chip and cannot be changed, the EPS resides in the endorsement
hierarchy and is used to create the Storage Root Key (SRK) where the private part
never will leave the chip and can only be proven to exist by decrypting something that is
encrypted with the public part. SRK is used as the root of the entire key hierarchy.

One of the important use cases for TPM is Secure boot. When a system is booting,
the TPM is used as the root of trust, and will not allow the system to boot if malicious
manipulation is detected. The TPM has 15 Platform Configuration Registers (PCR) which
are used to store hashes when the system is booting, hash values from all the hardware
devices and hashes of boot firmware code are calculated and only if the hashes match up
the system will boot as the integrity of the system is confirmed.
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An operating system can take ownership over the TPM, this is done with the creation of
a new SRK. A notable limitation is that only one operating system can have ownership
over the TPM. So in a dual boot environment only one of the operating systems can use
the TPM for key storage.

With TPM 2.0 ”Enhanced Authorization” was introduced, which can be used to construct
very sophisticated access control mechanisms [64] which also makes use of some of these
PCRs to hold session hash digestives, and only if the final hash match up access are
granted. It is a very advanced feature and to limit the scope it has not been considered
further, however, it is believed that the ACRYLIC system could make use of this in some
scenarios.

Although TPM is used for secure computing, there are some serious concerns about using
the chip. There have been different physical attacks where an intruder can read out keys
of the TPM. For example BitLocker’s disk encryption key can be extracted, hence making
it possible for an intruder to decrypt data unauthorized [76, 68, 58].

We should also consider if binding data to hardware can be problematic. If for example
the device breaks, then no one can decrypt the data. When backup is made this should
also be encrypted, but binding backup data to a single device also seems fragile.

4.2 Current Operating Systems Security Mechanisms
In the section some of the current and most known Operating Systems are analyzed,
including a relevant system called seL4. Especially their security features are analyzed
and how they protect their systems. Concretely we will in the following subsection look
at Windows, Apple’s MacOS and iOS, Linux, Android, FreeBSD and seL4.

Most of the information in this section comes from different talks from developers and
security researchers, why some of the references are from either talks, blog posts or directly
information from vendor home pages. It has been a goal to validate information between
vendors web pages with the found literature, which is believed to give the most accurate
analysis as possible.

Some systems are proprietary and there exist countless of different features and systems,
through general research and available information both on vendors websites and research
papers, all largest state-of-the-art solutions are analyzed, and has been investigated and
described as far as possible with open litterateur.

4.2.1 Windows
In this subsection Windows is analyzed. Information for this subsection has been found
in following papers: [69, 81, 76, 29, 40], vendor web pages: [49, 47, 50] and the 2015
blackhat conference talk ”Battle Of The SKM And IUM: How Windows 10 Rewrites OS
Architecture” by Alex Ionescu and the 2016 blackhat conference talk ”Analysis of the
Attack Surface of Windows 10 Virtualization-Based Security” by Rafal Wojtczuk.

Secure Boot
Microsoft and Windows have been a huge factor for the direction of development in modern
computers. One result is the TPM as just introduced in Section 4.1. It is used together
with UEFI firmware and Secure Boot which are also heavily influenced by Microsoft.

Secure boot was introduced when Windows 8 was launched and it is now one of the most
important tools for root-of-trust. The secure boot process is as described in Section 4.1.
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Some Linux distributions take advantage of Microsoft’s work with secure boot and makes
it possible to boot some Linux distributions with secure boot enabled. If an operating
system does not support secure boot, this has to be disabled in firmware settings and the
secure boot process and integrity check will not be made.

As we discussed in Section 3.2.4 it is a very hard task to validate the boot process and
currently Secure Boot is the state-of-the-art to address this problem. Apple uses their own
hardware module to do something similar which we will analyze in the Apple Subsection
4.2.2.

BitLocker
Furthermore Windows also uses the TPM for their disk encryption tool called BitLocker.
BitLocker is not enabled by default and has to be activated by the administrator of the
system. Furthermore it should be noted that BitLocker is not included in Windows 10
Home edition. Bitlocker can also be used without a TPM installed, but will require some
workarounds, we will focus on the case where a TPM is available.

BitLocker encryption keys are stored inside the TPM. This was validated by a small
test where BitLocker was enabled and the TPM was cleared afterwards. On the next boot
Windows was not able to decrypt the hard drive due to missing encryption keys. Although
it requires physical access to the computer, this seems like a warning flag. It only takes
a few minutes to boot the computer and clear the TPM in the firmware settings. In the
default case, this requires no passwords or security checks to do at all.

The data was however not totally lost since a unique 48-digit numerical password (recovery
key) was made due the BitLocker enabling process, but only if the user has this key written
down or stored somehow remotely, then this key can be entered and can recover the original
encryption keys and the hard drive can be decrypted.

Virtualization Based Security
We will now move our focus to the architecture of Windows and which security features
they have introduced in the architecture. Microsoft’s current keystone for security is
Virtualization Based Security (VBS). Although this is only for Windows Enterprise and
Server (2016 and newer).

Let’s start by clarifying the terms Secure Kernel Mode (SKM) and Isolated User Mode
(IUM). The idea with VBS is to set up Virtual Secure Mode (VMS) to create two virtual
levels; Virtual Trust Level 0 (VTL 0) and Virtual Trust Level 1 (VTL 1). These levels
can be seen as virtual machines, hence the Windows Hypervisor is required. The higher
a VTL is, the more privileged it is. This means VTL 0 is normal mode and VTL 1 the
Secure mode. This should not directly be transferred to the Ring Levels of the CPU, where
ring 0 is kernel mode and ring 3 is user mode. In each VTL the CPU can be in any ring,
this makes kernel and user mode possible in both VTLs.

The VMS is the hypervisor-facility which makes the features Device Guard, Credential
Guard, virtual TPMs and shielded VMs available. We will not go into specific details with
all the features, but we should get the understanding of how the structure works. The
mentioned features are living in VTL 1 - the secure mode. From VTL 0 we want to make
secure requests to the mentioned security features. For example let’s consider Figure 4.1.
If we imagine that we want to authenticate for some operation (Credential Guard), we
will execute a command from VTL 0 and CPU Ring level 3, this is the normal mode’s
user mode. The authentication call is done by a syscall to the normal mode’s kernel mode
(CPU Ring level 0). Via the hypervisor the request enters the Secure Kernel (SKM) in
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secure mode (CPU Ring level 0), SKM hand off the request to the authentication process
running in IUM, which is running in CPU Ring Level 3, limiting the privileges for the
secure processes can do, hence greater security.

Figure 4.1: Windows’ Credential Guard architecture illustration from https://docs.
microsoft.com/en-us/windows/win32/procthread/isolated-user-mode--ium--processes, Ac-
cessed: 2021-05-31

Note the highlighted SLAT on the figure. This is the Second Level Address translation,
this is the unit translating addresses from VTL 0 to VTL 1 and vice versa, this prevents
VTL 0’s ability to directly access things in VTL 1 and gives the power to control the
information flow.

Furthermore, processes in IMU are called trustlets and are isolated processes with a strict
syscall interface to SKM.

For the VBS and VSM to be secure it is highly important that VTL 1 is not compromised.
The point of the architecture is to ensure that if something happens in VTL 0, even if the
kernel in VTL 0 is compromised, then VTL 1 will prevent further compromising. VTL 1
can for example know cryptographic secrets which for example can be used to prevent an
intruder that want to make privileged escalation (authentication request as discussed) or
execute malicious software which are not signed (using another feature called Hypervisor-
Protected Code Integrity (HVCI)).

To ensure that VTL 1 is not compromised, the Secure Boot process is used to integrity
check the whole system as discussed. If the Secure Boot process succeeds VTL 1 is trusted,
and can perform the trusted operations that are wanted. However, it is possible to run
the setup without Secure Boot enabled, but this is leaving the security gap that it cannot
be guaranteed that VTL 1 has not been tampered with.

Default Security Windows Pro Installation
As mentioned VBS and VSM requires Windows 10 Enterprise or Windows Server 2016 or
higher and also requires advanced setup. With the analysis we also want to know which
security there is for standard users, therefore we want to analyze the security of a standard
Windows Pro consumer installation.

Firstly it is noted that any advanced security feature is disabled by default. Examples
seen in figures 4.2, 4.4 and 4.8.
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BitLocker in the Wild
Recall that BitLocker is not installed by default in Windows Home edition and in pro
edition it is not enabled by default, this is seen in Figure 4.2.

Figure 4.2: Screenshot of Windows showing BitLocker disabled by default in Windows
Pro

To confirm about BitLocker usage of TPM and TPM ownership in general, Windows does
not have the ownership of the TPM in the analysis test, and Windows cannot use it to
store encryption keys. In Figure 4.3 enabling BitLocker is tried and we see that windows
says that the TPM need to be initialized, hence letting Windows take the ownership and
generate a new RSK (Root Storage Key) as described in Section 4.1. It should be noted
that BitLocker does not rely on VBS.

Figure 4.3: Screenshot of Windows showing the case where Windows does not has the
ownership of the TPM and says that it needs to be initialized before it is possible to
enable Bitlocker

Even though the current understating is that VBS should only be a part of the enterprise
and server editions, there is still an entry in the system information, see Figure 4.4. It is
not entirely clear from open literature if it is only the VSM-part that is for enterprise and
server editions or exactly which features are accessible or not in which editions.
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Figure 4.4: Screenshot of Windows showing VBS is found, but not enabled

Application Guard and Isolated Browsing

However, it is possible to enable and install Application Guard and enable Isolated Brows-
ing. Application Guard is a feature which allows Edge to run in a virtual environment,
this means that if some malware tries to exploit Edge when a user is surfing websites
online, it would not have access to the rest of the system.

The installation is done through Windows Features, see Figure 4.6, and will require a
reboot of the system. However, there are also some unclear things here. In Figure 4.6
we can see that Hyper-V is not installed. Recall this was required for VBS and VMS to
run, but on the analysis test system this is not installed, however VBS is enabled after
the reboot, see Figure 4.7

Figure 4.5: Screenshot of windows showing
the Application Guard Settings

Figure 4.6: Screenshot of Windows showing
the Windows Features it is possible to en-
able a lot of features, in particular Applica-
tion Guard

So at least some of these features can be enabled in Windows Pro edition. This should
at least settle the point about advanced configuration, and that it is not easy to see and
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understand what it actually done, and if some configuration is still missing for the features
to work correctly. At least non-technical persons would not be able to configure this by
themselves.

Figure 4.7: Screenshot of Windows showing VBS is enabled after the installation of Ap-
plication Guard

Controlled Folder Access
The last findings we will discuss is the ”Controlled Folder access”, see Figure 4.8, this is
maybe the most directly relevant findings with respect to the later presented ACRYLICS
solution. Controlled Folder access does not rely on VBS.

With Controlled Folder access enabled, Windows will prompt the user if some program
tries to access something in a folder that it should not. The user can then grant or deny
access.

Figure 4.8: Screenshot of Windows showing Controlled Folder Access settings, also dis-
abled by default

The solution aims to prevent ransomware from accessing all files on the system, and if
an attack is ongoing then the user explicitly has to press access granted to allow the
ransomware to access the files, but as with the other security features, this is optional,
and is not enforced. It is also disabled by default.

4.2.2 Apple - MacOS and iOS
In this subsection information has been found in following papers: [67, 2, 57, 72, 34, 19,
22], following pages at Apple’s website [7, 5, 6, 63, 1], following blogspots: [20, 4, 62] and
the 2019 Blackhat conference talk ”Inside the Apple T2” by Mikhail Davidov and Jeremy
Erickson and from the 2016 BlackHat conference talk ”Demystifying the Secure Enclave
Processor”.
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Brief History and Background

When investigating Apple, there is a lot in common for the security in their Operating
Systems. The main focus will be the security in the macOS for their MacBooks and iOS
for their iPhones, but this will also include mentioning watchOS, BridgeOS and SepOS,
and this is why it all comes together in a general analysis.

Before diving into the newest security specifics, it is worth mentioning that Apple also has
a long history like Windows’ and Linux’, which was briefly described in the introduction.
MacOS is based on the Mach kernel (First version 1985) and BSD (First version 1977).
BSD is derived from the original Unix System (1970) and macOS and iOS are therefore
also Unix-like as we saw with Linux.

Even though the state-of-the-art solutions we are going to analyze are advanced technolo-
gies, it is still important to remember the roots of the systems. Behind all these new
technologies is still the same core system, and it is here we will observe the limitations
and flaws.

Apple’s is going in the direction of hardware security and especially with their Secure
Enclave processor and T2-chip. They want to ensure the root of trust and integrity in
even more advanced ways than we saw with Windows and TPM. All of Apple’s operating
systems (iOS, iPadOS, macOS, watchOS or tvOS) are using hardware components to
improve the system security. iPadOS, tvOS and watchOS will not be investigated further,
but with current information, we should believe that the idea of security in these products
follows what we will see in iOS and macOS.

Secure Enclave processor

All newer Apple devices are equipped with the Secure Enclave Processor (SEP) which is
a secure coprocessor launched with the iPhone 5s generation. MacBooks are special and
have a chip called the T1-chip (Launched with the 2016 MacBook) or the newer T2-chip
(Launched with the 2018 MacBook) which are also security chips which includes the SEP.

What Windows is doing with Secure Boot and TPM, Apple is doing this with the Secure
Enclave processor. The whole point is to have a very little part that can be verified and
be secure from the rest of the system, and let that little part check the integrity of the rest
of the system, hence ensure the security of the entire system. Apple is also very sensitive
about the update procedure of both apps and the operating system. The whole Apple
environment requires signed software packages when updated or installed. Something
where SEP also plays a role ensuring constant integrity.

We should distinguish between devices with T2-chip and non-T2-chip devices and it seems
that we have to focus on two different operating systems; SepOS and BridgeOS. SepOS is
officially described by Apple and is the operating system running on SEP. BridgeOS is the
operating system running on the T2-chip, but no Apple-official information has been found
for BridgeOS and it is therefore very hard to validate the exact relationship between all
these components. However, a lot of reverse engineering results give some strong pointers
for the missing information, and the following analysis is based on the combined findings.

SepOS

SepOS is an Apple-customized version of the L4 microkernel and is the operating system
running on SEP. L4 microkernels allow formal verification and Apple can thereby sign,
verify and certify SepOS and SEP. This finding is quite interesting, since it was already
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planned to include the seL4 microkernel later in this chapter. seL4 is also based on the
L4 microkernel, but is built as a capability-based microkernel.

From the 2016 BlackHat conference talk ”Demystifying the Secure Enclave Processor”
more detailed information about SepOS was found, but we will not go into further details.
Instead we will turn our view to the T2-chip.

T2-chip and BridgeOS
T2-chip is Apple’s newest state-of-the-art security chip and it is actually more than just a
co-processor, it is a 64-bit ARMv8 processor, it is stated that it is not exactly the same as
the A10 processor found in iPhone 7 and 7 Plus, but is build from the same core element
as the A10-chips.

This means that the T2-Chip is a full SoC (System on Chips) with its own Operating
System called BridgeOS, which is a derivative of watchOS. The T1-chip, the first version
of the security chip, was based on a processor which was very similar to the processor in
the Apple Watch, why BridgeOS is based on the watchOS.

The T2-chip makes hardware support for encrypting the disk available. It has burned in
a secured AES 256-bit key into the chip which is used for the encryption and decryption.

For our point of view we should note that when the Mac is booting up, the decryption
happens automatically and transparently for macOS. This is of course convenient, but one
should be aware that the data is decrypted without user activity.

Apple states that one should activate FileVault, which is Apple’s disk encryption utility.
FileVault existed before the T2-chip era, and provides the possibility to enter a user
password to derive encryption keys and has to be entered before encryption and decryption
can happen. FileVault can now make use of the T2-chip, and if FileVault is enabled,
password is required before the T2-encryption can happen, this secures the system in that
user action is required before decryption can happen.

As discussed with the TPMs, hardware based encryption also have some drawbacks, mainly
about backing up data. If the T2-chips get destroyed somehow, it will no longer be possible
to get the burned in encryption key on the 2T-chip, which leaves the data unrecoverable.
Apple therefore suggests backing up the data in another way. For example with FileVault
activated and TimeMachine to do the backup. In this way it is possible to backup the
data encrypted, but without the involvement of the T2-chip. The backup data should also
should be encrypted, otherwise the data would just be unprotected in the backup storage.

FileVault
A few more details about FileVault. FileVault can work with multiple users, where each
user can have their own password. The credentials are stored and when the system is
booting it will prompt for credentials, if access granted the volume master key will be
derived.

Since all users derive the same volume master key, it means that no matter which user
boots the system, all data can be decrypted. If someone has root access to the file system,
then any data can be read.

Pointer Authentication Mechanism
Another advanced security feature Apple is using is a Pointer authentication mechanism,
where the highest bits in each pointer is signed with a key, and only if the correct key
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is applied, then the pointer can be authenticated, and a valid pointer is calculated. It
ensures that potential malicious programs cannot just follow pointers and do harm, they
need a key to do that.

App Capabilities

Apple is also concerned about capabilities for apps, where developers can ask for permission
for different functionality. The end user then has to accept if the app is allowed to get
the access. It’s a well known scenario on the iPhone where one has to allow access for
contacts, Bluetooth etc.

More recent updates of iOS, but also macOS, requires the user to allow different program
access to different files.

However as mentioned earlier Apple is very sensitive with software packages and app
development. For example it requires a paid Apple developer account to access all these
capabilities. It can of course be seen as a good thing, since developers at least have to
spend some money to develop an app which may require sensitive capabilities. However,
it also seems as a drawback limiting usage of the system, and preventing some developers
from making secure apps, and should security really consist of whether intruders want to
spend some money first and register some persons information?

iOracle - Jailbreaks, Exploiting the legacy core

The iOracle tool [22] is used to build a graph as complete as possible for access permissions
in the entire iOS operating system. Later queries can be made in the graph to see which
parts have which permission to what.

In the iOracle paper [22] examples of exploiting the system core are presented, commonly
known as jailbreaking or ”rooting the device”, which means an exploit which makes root
access possible. Early jailbreak attempts could exploit the device before it was booted,
but with the new hardware security in the boot stage, this is now less feasible. Newer
jailbreaks are therefore more feasible when the device is running.

One jailbreak used a vulnerability in the classical POSIX symlink command and could
link a file to another directory with greater permission, and in the end root access was
obtained.

This example shows that adding multiple security layers around the core, does not make
the core secure. Root was obtained with the standard UNIX permission bits and shows
that the real core design is still sensitive, and if someone breaks the new features, then
the complete system may be broken.

4.2.3 Linux

In this subsection Linux’ security features are analyzed. Information used in this subsec-
tion has been found in the following papers [23, 11] and following blog post [56].

Linux has multiple security features, but no real strict strategy to obtain greater security
as we have seen with Windows and Apple. Linux’ open source nature makes it possible
to come up with many different security features, but as Linux has roots in UNIX where
there only were two privileged levels; super user and regular user, this still has dominant
effect on the system, and the core system design is making it difficult to enforce the new
security features.
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Linux Capabilities

Linux Capabilities was introduced in the Linux kernel version 2.2. The idea is to take all
the super users capabilities and divide them into smaller capabilities. These capabilities
can be assigned individually to a program.

An example is the ping command, which must have the CAP_NET_RAW capability to
work. With setcap the capability can be given to ping and an unprivileged user can
now execute ping with CAP_NET_RAW without super user permissions. In fact any user
can now execute the program with the newly assigned capability. The capability is stored
with the file in the Extended File Attributes called xattr and cannot really be stored
with the users, recall the ACL vs Capability example in Section 2.2.

This also means that the system needs a file system that supports xattr’s, otherwise is
it not possible to save the information. xattr is space for some extra meta data for a
file, but if a file is copied to a file system which does not support xattr, then the file
would lose the information, hence its capabilities. It is also a design decision in Linux that
capabilities in xattr is not copied on a copy.

A larger problem with Linux Capabilities, is that a single capability itself can provide
enough power to become a full privileged user, this really ruins the capability idea.

For example the CAP_SETUID-capability where a user simply can change its UID to 0,
which is the UID for root, and the user has now root-access.

The suid- and sgid-bit Problem

A long going problem with security in Linux is the suid- and sgid-bits. If these bits are
set for a program, it tells the kernel to execute the program with the permission of either
the owner’s uid or the owner group’s gid.

Lets look at the terminal utility screen as an example. screen allows multi-user-
terminals in one terminal, also called a terminal multiplexer. screen requires root to
access data belonging to the utmp-group, which allows screen to access multiple users’
files.

On a basic Arch Linux system the standard UNIX permission bits for screen is

(From Linux Arch 5.11.11-arch1-1)
-rwsr-xr-x 1 root root 486248 Mar 4 17:59 screen-4.8.0

The s in the owners permission bit is indicating that the SUID is enabled, and if executed,
it is executed as the owner and not as the user executes it. This means that this particular
program is running as root, no matter how it starts.

Developers are ongoing trying to rewrite programs and procedures to get rid of these
legacy bits. The next example is from a Debian 9 (Stretch) system.

(From Debian 9 Stretch)
-rwxr-sr-x 1 root utmp 457608 Feb 10 17:03 screen

In this example we see s in the group’s permission bit, this means when a user are executing
screen, then it will be run with that group’s permissions. So now the program will not
run as root, but will have some permission from the utmp-group.

In a Ubuntu 20.04 system, which is newer than Debian 9, we will see that the development
has succeeded by removing both suid and sgid-bit completely.
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(From Ubuntu 20.04)
-rwxr-xr-x 1 root root 474280 Feb 23 18:46 screen

The program can now be executed as the user itself and the user’s group. However, this
raises the question, what about the things that was needed to be accessed in the utmp-
group?

The multi-user support has simply been removed as default. So when a user executes
”screen”, it cannot access data for other users. This is of course a security benefit, but it
is also a trade-off of usability. If multi-user functionality is wanted, then serial steps are
required and most importantly the suid-bit is once again required to be set.

It is possible to protect against these bits as UNIX file systems, like NFS and ext4, can be
mounted with a ”nosuid”-flag, this tells the running Linux system to block any operation
of suid- and sgid-bits. It will only prevent the use of the bits but will not fix the problem.

PAM (Pluggable Authentication Modules)
Another feature in Linux is PAM (Pluggable Authentication Modules). It is a way to set
up sophisticated access control rules to programs. A program can have a specific file
specifying the PAM access rules for that program, normally located in /etc/pam.d.

The rules uses some PAM-shared object libraries, where each object is one simple rule,
binding these together one can make really sophisticated rules.

However, non-technical users might not be familiar with PAM and the rules are hard
to configure and require deep knowledge about the authentication control and how to
integrate them in the systems and programs.

MAC (Mandatory Access Control)
As discussed in Section 2.2 most of the Linux distributions are using DAC (Discrete Access
Control) but with MAC (Mandatory Access Control) security can be improved. There are
some patches to Linux, which takes MAC into Linux. Two of the most knows are SELinux
(Security-Enhanced Linux) and AppAmor.

AppAmor is a service which makes sure that applications that should be ”enforced” do
not access something that is not allowed. However, it is an add-on to the existing Linux,
so even if Ubuntu and other systems come with this, it can be disabled and circumvented.

SELinux is the other solution and is using labels as described in Section 2.2. It was
originally developed by NSA and is now developed by RedHat. SELinux is integrated by
default in for example RedHat Linux Enterprise, CentOS and Fedora.

It is a very advanced system and provides good security when the system is running, but
it can be turned off like AppAmor leaving the standard unix permission back. If SELinux
is enabled the legacy Unix permission bit is ignored.

SELinux neither enforces protection of the file system. So if the file system is mounted on
another operating system, it is possible to just mount and traverse all files like no security
was there. SELinux, and also AppArmor, are also requiring xattrs in the file system to
store the security labels, and therefore has the same limitation about file systems as we
saw with Linux Capabilities.

dm-crypt - LUKS
There exist multiple solution to disk encryption on Linux. We will look at the ”dm-crypt
- LUKS” combination.
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LUKS (Linux Unified Key Setup) is a disk encryption specification, which specifies an
on-disk format and can be used with different frontend encryption systems. In this setting
it is the dm-crypt subsystem that is used, it has a ”Device Mapper” interface and has
been a part of the Linux kernel since versions 2.6. dm-crypt is used to map the LUKS
partition and encrypt and decrypt data in block device fashion and write/reads to the
LUKS partition.

This solution does not either support multiple user keys and rely on the same master
key to encrypt and decrypt the whole partition. So far it has not been possible to find
a solution on Linux where this is possible. Only workarounds where each user has an
encrypted overlay file system on the main file system has been seen as a solution for this.

Setup of ”dm-crypt - LUKS” also requires some technical skills and does not work straight
out of the box.

4.2.4 Android
In this subsection Android is analyzed. Information in this subsection has been found in
following paper [35], following webpages, blog posts and talks [65, 70, 77, 8], and the 2017
blackhat conference talk ”Honey I Shrunk the Attack Surface – Adventures in Android
Security Hardening”

Background

Figure 4.9: Illustration of the software stack
of Android from https://developer.android.com/guide/
platform, Accessed: 2021-05-31

Android is a mobile operating sys-
tem and because of the huge num-
ber of mobile devices running An-
droid, it is the most widespread
operating system in the world.
Android uses Linux as a ker-
nel and has done a lot of work
to harden userspace and reduce
userspace’s ability to reach the
kernel unattended or unautho-
rized. We will focus on how they
secure the OS level, including se-
curing the interprocess communi-
cation, how they do app sandbox-
ing, and lastly the BigMAC-tool
[35] is introduced and used for fur-
ther analysis.

Figure 4.9 shows an overview of
Android’s architecture. There are
multiple layers from System Apps
to the Linux kernel in the bottom.
Android wants to be the most se-
cure and usable operating system
for mobile platforms by repurpos-
ing traditional operating system
security controls.
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Android’s concrete security goals is:

• Protect app and user data

• Protect system resources (including the network)

• Provide app isolation from the system, other apps, and from the user

Android provides following security features to reach these goals:

• Robust security at the OS level through the Linux kernel

• Secure interprocess communication

• Mandatory app sandbox for all apps

• App signing

• App-defined and user-granted permissions

From a blog post [65], one of the software engineers from Android security, is stating that
”Defence is all about increasing the attack chain length and making each link individually
harder to exploit”. The philosophy of the proposed ACRYLICS system disagrees. It is
much more powerful, making the soft vulnerable parts more secure and being able to prove
security mechanisms here. Even though a long path has to be traversed to reach the inner
Linux kernel in Android, recall Figure 4.9, only one intruder has to breach it once, and
then everyone else can use the exploit. Security should come from the core design, not by
multiple obstacles. It reminds of the three pigs and the wolf with houses built of sticks or
bricks, making a fence around the houses does not make the house more secure, no matter
how strong the fence is.

Securing the kernel and interprocess communication

Android’s security model heavily relies on a self developed, modified version of SELinux
(Security-Enhanced Linux). SELinux enforces MAC (mandatory access control) for files
and processes as discussed in Subsection 4.2.3. MAC enforces greater security and in-
troducing SELinux in Android has a huge effect on the kernel security. It should be
recalled that SELinux is an optional add-on rather than a requirement, but since Android
very much can control their platform, they can enforce the use of it. In the BigMAC
and further analysis section we will see examples of kernel security issues besides these
mechanisms.

Further investigation by Android researches showed that the greatest causes for reaching
the kernel from user space was through ioctl-calls (interprocess communication). By us-
ing SELinux it is possible to restrict access with extended permission rules (XpermRules).
XpermRules are a facility in SELinux where very sophisticated access rules can be con-
structed and restrict access on a fine grained level.

App-isolation

The basic idea for app-isolation in android, is to use the Linux user-based protection.
This means that every app assigns a unique user ID (UID) to each app and runs it in its
own process. This isolates apps from each other and protects apps and the system from
malicious apps and also separate file access between the app’s. Since this separation in
down to the UNIX permission this ensures isolation down to what they call ”kernel-level
Application Sandbox”.
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BigMAC and further analysis
BigMac [35] is a tool for Android like iOracle is for iOS as discussed in Subsection 4.2.2.

BigMac is also building a graph over permission, and it is possible to query which files
and processes that have which rights. Discussions in [35] confirms a lot of things already
discussed. Firstly we should note that Android is using the classical UNIX permission and
the standard DAC system we already have discussed in Subsection 4.2.3. Android also
uses MAC in terms of SELinux and lastly Android also uses Linux Capabilities, which
we discussed in Subsection 4.2.3. This means that Android uses almost all permission
systems in Linux.

There are most likely arguments for and against this, but at least the complexity of the
complete access control system is enormous and certainly complex to verify and BigMAC
tool tries to enlighten this task.

Recall that Linux Capabilities had the disadvantages, that one single capability can be
so powerful, that it can be used to obtain all other capabilities. This is also the case
in Android. In [35] a query search for processes with the CAP_SYS_ADMIN resulted in
a finding of 25 daemons that had this capability and could be used to achieve privilege
escalation like the privilege escalation attack reported in CVE-2018-9488.

Another example in [35] is about the system_server, where the system_server
module has the capability CAP_SYS_MODULE, which allows system_server to load

arbitrary kernel modules, and it is concluded that system_server must be refactored
into smaller services, to break up privileges more fine grained.

In [35] the lack of granularity of CAP_SYS_ADMIN is also highlighting and the Linux
capabilities in general. Concretely in Android, any process with the CAP_SYS_ADMIN
capability can get arbitrary code execution in any other domain it can transition, which
is a sign of weakness of the capability security model itself.

Combining all these security control systems is very complex and it is not obvious when
only analyzing one of the systems in isolation that problems can arise. In the end it all
comes down to these classic security problems from legacy UNIX design choices, which
cannot compete with the security requirements today. There is missing one canonical and
central way to obtain security and the argument that defence is all about creating a longer
and harder chain to the critical parts seems to be a bad assumption.

4.2.5 FreeBSD
FreeBSD is also a UNIX-like operating system and has the same difficulties with legacy
UNIX features as already discussed throughout this chapter. One could note that FreeBSD
offers OpenPAM in contrast to Linux PAM, but the idea is the same and not so interesting
for further analysis. More interesting is FreeBSD’s capability and sandbox framework
Capsicum [79]. Capsicum was started to be integrated into the Linux kernel, but the
last code commit was on Sep 21, 2017. The repository is Google’s repository and is now
marked as unmaintained and Capsicum has never integrated into Linux [15].

Let’s examine how Capsicum can be used in FreeBSD. A test program has been constructed
which will be used for the examination, see Listing 4.1.
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1 #include <sys/capsicum.h>
2 #include <stdio.h>
3 #include <stdlib.h>
4 #include <string.h>
5 #include <errno.h>
6 #include <unistd.h>
7 int
8 main(int argc, char *argv[])
9 {

10 int c;
11 int errs;
12 int fp;
13
14 char *buf = "Write allowed by Capsicum\n";
15 cap_rights_t r; // Current granted rights
16
17 errs = errno;
18
19 // If cap_enter() is called before the file is openen,
20 // it will not be allowed to open the file
21 // cap_enter();
22 fp=open("test.txt", O_WRONLY);
23
24 if (fp < 0 )
25 {
26 printf("File is not opened\n");
27 return 0;
28 }
29
30 if ((c = cap_enter()) != 0) {
31 fprintf(stderr, "cap_enter failed: %s\n", strerror(errno));
32 errno = errs;
33 return c;
34 }
35
36 // If the Write Capabiltity it not granted
37 // the program cannot write to the file
38 cap_rights_init(&r, CAP_WRITE); // Grant write capability
39 if ((c = cap_rights_limit(fp, &r)) != 0) {
40 fprintf(stderr, "cap_rights_limit failed: %s\n", strerror(errno));
41 errno = errs;
42 return c;
43 }
44
45 write(fp, buf, strlen(buf));
46
47 return 0;
48 }

Listing 4.1: Capsicum test program

Capsicum is used to limit a program’s capabilities and use the principle of least privileged.
The whole Capsicum environment start with the cap_enter()-call. The Capsicum
interface is include via #include <sys/capsicum.h>.

After the entry call the program can be considered to be in the sandboxed capability
mode and the program is only allowed to issue system calls operating on file descriptors
or reading limited global system state, this means that any file that the program should
access has to be opened before the entry call. If a file is attempted to be opened after
the entry call, it will fail.

32 ACRYLICS



If the program has opened the file before the entry call, Capsicum can be told what the
program should be allowed to do on file descriptor. As seen in the test program (Line 38)
we assign the write capability to the program, such that it is allowed to write to files, this
is done with cap_rights_init(&r, CAP_WRITE);.

When the capability has been granted, Capsicum should of course then check if the pro-
gram has the required capability when a specific action is about to be performed. In our
test program we want to write to the opened file. The permission check is done with
if ((c = cap_rights_limit(fp, &r)) == 0) (Line 39). If the check fails, per-
mission is denied and some error handling should be done. Otherwise it is confirmed that
the program has write permission and a normal write call can be used.

For the first time we see an example of programming with capabilities in source code,
and the reasoning about Capsicum seems really good, however there are some pitfalls
which we will dive into. The use of Capsicum is optional and can be circumvented. Only
executables which are programmed with Capsicum and follow the procedure correctly are
benefiting from it. There is no system requirement that enforces the use of Capsicum.
Even in the test program the checks can circumvent by avoiding the check call, e.g. if
((c = cap_rights_limit(fp, &r)) == 0) (Line 39).

If a file is opened before the Capsicum entry call, the program has all the permission to the
file that the file is opened with and what UNIX permission allows. If the Capsicum entry
call is called, the program will still be sandboxed and it is not possible to open new files
and the program are restricted with system calls, but it is the programmers responsibility
to do the cap_rights_limit-checks on open files. Even a programmer that has all
good intentions can forget these checks, which can lead to vulnerabilities opening and this
is not optimal.

4.2.6 seL4 - Microkernel

seL4 is an example of an active state-of-the-art capability-based system [33]. seL4 is a
microkernel in the L4 microkernel family [34]. The L4 microkernel family is known for
the formal verification ability and seL4 are therefore formally verified [39]. seL4 also
functions as a hypervisor. seL4’s capability scheme seems to focus more on capability
in the execution environment and not so much about file storage. Both security in the
execution environment and file storage are very important, but it has not been clear in the
literature how exactly seL4 handles file storage, but as seL4 is a microkernel, the services
lives in user mode and we assume that any file system could be attached, as long a service
is implemented for it.

In the seL4 whitepaper [33] a classic example is given about how the capability should
work. Assume Alice wants to compile a file. In this case Alice needs to hold three
capabilities: an execute capability to the compiler, a read capability to the input file, and
a write capability to the output file, this is exactly how a capability system should work.
This solves the confused deputy problem as we introduced in Section 2.2 which cannot be
solved with ACLs, which are also underlined in the seL4 whitepaper. In the paper they
also state that if someone is trying to sell you a “secure” OS, it should not only have a
correctness proof, but it should also be using capability-based access control. If not, the
OS is not secure.

So in essence we need a capability system, which can be proven correct. The seL4 kernel
can be formally verified from the source code itself, whereas ACRYLICS will focus on
the correctness of the capability- and disk encryption-scheme. Furthermore the goal of
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ACRYLICS is to combine the capability security in the kernel and the file system, such
that it cannot be attacked, unless the whole protocol can be broken.

4.3 Remarks on File Systems
With the analysis so far, we have come across a lot of different security mechanisms. An-
other place developers are trying to enforce security is in file systems. Some of the features
mentioned earlier in the chapter require special File System Attributes, like SELinux and
Linux capabilities.

If we look at the classical NFS file system, it is simply not designed to hold such information
and first in 2017, RFC8276 was proposed to add extended attributes to NFSv4. According
to Microsoft classical FAT file systems did not have extended attributes [48], however, it
seems that there exist solutions which uses hidden files to support it, but the point here
being, that one should be aware of what the file system supports, and what is needed for
the security wanted.

One thing is the support of extended attributes, another thing is encryption on file system
level. Some Full Disk Encryption tools have already been introduced earlier in the chapter;
BitLocker, FileVault and dm-crypt, but some file systems themselves have encryption. We
will take a closer look at CryFS and ZFS.

4.3.1 CryFS
CryFS is a file system designed such that a user securely can store data at a cloud provider
[45, 46]. CryFS encrypts the file contents, but also metadata and directory structure, this
means that a cloud provider would have no idea of the data saved in the cloud.

CryFS is developed in a master thesis [45] and is proved secure. CryFS has been in-
spirational due the ACRYLICS project development, even though CryFS security model
and proof technique is based on Kristian Gjøsteen security game-based approach [25],
where ACRYLICS is based on the model of and Dupont [21] and the UC framework prove
technique, which was described in Section 3.2.

CryFS is designed to be a one-user-system between host and cloud, whereas ACRYLICS
has constraints to support multiple users at kernel environment level.

4.3.2 ZFS
ZFS is also an interesting file system since they are integrating encryption into the file
system. There are not many file systems that offer native encryption and this is why ZFS
is interesting, also given ZFS’s support for very large disk space.

The OpenZFS Developer Summit 2016 talk ”ZFS-Native Encryption” presents the encryp-
tion in ZFS and contributes to awareness of procedures and key handling in such systems.
Combined with the knowledge of Damgaard and Dupont [21] this made the concrete ideas
for the implementation of ACRYLICS.

ZFS has also led to discussions about free space allocation, which has not been a main
factor in ACRYLICS so far, but it needs serious considerations, since the performance of
the allocation scheme can have huge impact on the overall performance, which are also
seen in context to ZFS.
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4.4 Discussion
In this section the findings from the analysis are discussed to define security levels 1 and
2 as shown in Figure 1.1. Based on the findings it is motivated why it is believed that the
fundamental basis design for current Operating Systems can be improved towards better
security.

4.4.1 Security Level 1 - No Disk Encryption
The first security level should be considered as a standard installation of an operating
system without disk encryption.

Security Level
Level 4: ACRYLICS
With improved capability module
Level 3: ACRYLICS
Level 2: Full Disk Encryption
Level 1: No Disk Encryption

A well known structure in operating systems in the
separation of User Space and Kernel Space. There
might be some more advanced distinction in the sys-
tem, e.g. if we speak in the terms of which CPU ring
level is used or if the separation is more in software.

However, conceptually it is about separating user
operations from kernel operations. User operations
are defined to happen in a user module (UM), which
will be in the conceptual user space. In kernel space we will define multiple things. In
security level 1 we need to define File Module (FM) and Disk Module (DM). FM handles
the file system and the file operations to DM. DM is the actual disk and handles reading
and writing to the physical disk. It is the kernel which handles the file system and disk
IO, and therefore these two modules are placed in conceptual kernel space. Security level
1 aims at easily accessible security flaws, which often happens between what the running
system protects and what the offline system protects and UM, FM and DM is used to
illustrate this. The illustration of the conceptual system for security level 1 is shown in
Figure 4.10.

UM FM DM

User Space
Kernel Space

UM: User-Module
FM: File-Module
DM: Disk-Module

Figure 4.10: Standard System setup without Disk Encryption

To verify our conceptual understanding of the system we should take a closer look at a
couple of attacks against this system. We should consider two types of attacks, namely
a malicious UM, which would mean privileged escalation on a running system, and an
offline attack against the physically stored data. The conceptual attacks are illustrated in
Figure 4.11

It should be quite obvious that if the disk is not encrypted, the data on the disk can easily
be read and the security of the system is broken. All non-encrypted systems are prone to
this attack. In the analysis we saw that only Apple’s new T2-chip products are encrypting
something per default. So unless any configuration is made accordingly, any other system
will be prone to this by default.
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UM FM DM

Malicious UM
(Privilege
escalation)

Malicious FM

User Space
Kernel Space
Malicious

UM: User-Module
FM: File-Module
DM: Disk-Module

Figure 4.11: Standard System setup without Disk Encryption infected

Privileged escalation in the easy case could be obtained by booting a live USB system
and inspecting the non-encrypted disk. The attacker will have root permissions on the
running system and can access all data stored on the disk. This attack of course requires
that the attacking system has a File Module that can understand the stored data, but for
example a Linux system can read almost all file systems[43].

Privilege escalation attacks are most often more sophisticated, recall Jailbreak and attacks
against android from subsections 4.2.2 and 4.2.4. Attacks against encrypted hard drives
or privilege escalation through remote code execution [10].

As they also discuss in [43], disk encryption will prevent these attacks. With disk encryp-
tion we will add an extra module, the EM (Encryption Module). This is illustrated in
Figure 4.12.

4.4.2 Security Level 2 - Full Disk Encryption
In Security Level 2 we will use the same conceptual model from security level 1, but
we will add an Encryption Module in kernel space and will consider systems with Full
Disk Encryption. Systems in security level 1 do not protect the data, and the security
mechanisms analyzed does not prevent this and the next step is to add disk encryption.

Security Level
Level 4: ACRYLICS
With improved capability module
Level 3: ACRYLICS
Level 2: Full Disk Encryption
Level 1: No Disk Encryption

The Encryption Module handles the encryption
from FM to DM, with the same purpose as in the
disk encryption scheme in Section 3.2. The updated
model is illustrated in Figure 4.12

With added security of disk encryption, new attacks
have to be invented. If the system should be violated
from the perspective of a malicious UM, we should
consider the case where the operating system itself
holds the encryption key when the system boots and decrypts the disk content as needed
for the user.

If somehow the system can be accessed with another user and the disk encryption is
transparent, then it would be possible to read and modify the system since the operating
system holds the key at all time [29, 28].

To breach the system physically by a malicious FM, the encryption key is needed since
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UM FM EM DM

User Space
Kernel Space

UM: User-Module
FM: File-Module
EM: Encryption-Module
DM: Disk-Module

Figure 4.12: Standard System setup with Disk Encryption

the disk is encrypted. The attacker has to play the role of the malicious FM and malicious
EM. There are multiple scenarios where it is possible to get the encryption key to the disk
encryption solutions [40, 30, 11, 32].

UM FM EM DM

Malicious UM
(Privilege
escalation)

Malicious EM

Malicious FM

User Space
Kernel Space
Malicious

UM: User-Module
FM: File-Module
EM: Encryption-Module
DM: Disk-Module

Figure 4.13: Standard System setup with Disk Encryption infected

Bypassing Local Windows Authentication to Defeat Full Disk Encryption
From Ian Haken’s 2015 BlackHat talk ”Bypassing Local Windows Authentication to Defeat
Full Disk Encryption”, he showed it was possible to bypass local authentication to bypass
the full disk encryption on Windows. This is an example of a malicious UM attack.

HAFNIUM
HAFNIUM [28] is a series of vulnerabilities for Exchange Servers reported 2. March
2021 (CVE-2021-26855), which allowed unauthenticated Remote Code Execution with
”SYSTEM”-user permissions. It is possible for an attacker to instantiate a reverse shell,
install additional malware, exfiltrate Exchange data or other things. Parts of the exploits
were reported by the danish IT security company Dubex.

In a capability based system, such a service would not have capabilities to install other
programs, such as malware and would prevent further escalation in such a breach. This
attack is also an example of a malicious UM attack.

Cold Boot Attack
In a Cold Boot Attack an physical attacker makes a hard reset of a computer to dump
the data in the RAM. Even though RAM is said to lose its data when it loses power, it
actually remains for some time. Up to many minutes, and if the RAM is physically frozen
it can remain in days and weeks.

This allows the attacker to read out the data in the RAM, most often the attacker will
be looking for encryption keys to a potentially encrypted disk. If the attacker gets the
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encryption key, the attacker can play the role of malicious FM and malicious EM which
are required to break the system on the physical storage [30].

LUKS - key management
It has been shown that it is possible to reduce the number of possible encryption to LUKS
significantly [11] and this can lead to a breach of the encryption key. Hence an attacker
can play the role of malicious FM and malicious EM to break the system on the physical
storage.

It is no secret that key generation and derivation is hard and it is a tough task to do this
right but only a single master encryption key is used in LUKS, so if this key is breached,
then the whole disk can be decrypted.

VM FDE bypass
A very brutal attack is bypassing Full Disk Encryption (FDE) on Virtual Machines (VM).
A virtual machine is running in a completely hostile environment since both the storage
and the running system runs on a host. If the host is malicious it is very hard to defend
against breach. In [32] it is shown how this can be done for Windows and Linux systems,
with the FDE solutions dm-crypt, BitLocker and VeraCrypt. This is indeed an example
of a malicious UM attack and the attacker will not even know the encryption key, but will
still be able to breach the FDE.

Because of the transparent encryption that is used in the mentioned solutions, it is possible
for the attacker to read anywhere on the disk the attacker wants.

Root Access
In common for Windows and the UNIX like systems is that a root or administrator user
has access to anything. In the analysis different approaches were made to restrict this,
but the conclusion is still that root can do anything.

This means that privileged escalation which results in root permissions on the systems
will be able to do anything and only a real capability based system will be able to solve
this, recall the confused deputy problem from Section 2.2.

Moreover it also means that administrators on the current systems always will have access
to users files. It can both be a security problem but also a privacy problem. In very strict
systems the administrators should maybe be allowed to access all files, but this should
be a configuration and not the default, the users should be protected. Especially in the
case where an attacker has root permission and current systems can access all data for all
users.
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5 ACRYLICS - Advanced Cryptografic
Capability-based System

In this chapter ACRYLICS is designed and discussed. In Section 5.1 the core design is
introduced. In sections 5.2 and 5.3, we will go into details about the capability scheme and
the ACRYLIC File system respectively. The capability scheme is designed with theory
from Section 2.3 and the file system is designed with theory from Section 3.2. In Section
5.4 the Encryption Module is explained in detail and how it works in ACRYLICS. In
Section 5.5 the encryption flow is explained and it is pointed out that an improvement is
needed to the capability module. In Section 5.6 the improvement is proposed and we will
discuss how this solves the problem that we saw. Lastly in Section 5.7 Security Level 3
and Security Level 4 are defined and will be discussed with respect to the ACRYLICS
design.

5.1 Core Design
ACRYLICS core design consists of five modules. The Capability Module which is built
from the theory from Section 2.3 and the User Module, File Module, Encryption Module
and Disk Module which are built from the four players, that was described in Section 3.2.

The definition of the following modules is the ACRYLICS interpretation of all the theory
and analysis discussed so far.

5.1.1 User Module (UM)
In Damgaard and Dupont [21] users can call Initialize, Boot, read and write, this is also
the case here. But in the ACRYLICS model, UM should be seen as the complete user
interface as also defined in the security levels 1 and 2 in Section 4.4. This means that a
user can also execute programs and the programs itselfs can also run and make requests
as a ”player” in UM.

On Initialize and Boot UM sends the boot-password to EM, and EM is handling the
request and sends true or false back. read and write requests from UM are sent to FM and
corresponding capabilities are sent to CAPM for validation. If a capability is validated on
a request, FM continues the request, otherwise access denied is returned.

For other requests such as executing programs or network access etc, UM would send
requests to the specific service modules, for example a program dispatcher or Network
Module, but on any action UM should send a correspondent capability to CAPM, such
that CAPM can validate if the user or program has the necessary permission and the
service module can either continue the process if access granted or return access denied if
not granted.

5.1.2 Capability Module (CAPM)
The capability module is the access control mechanism and is based on the extended
capability scheme introduced in Section 2.3. The capability scheme consists of three main
structures which are Capability Objects, Capability Subjects and Capabilities. In Section
5.2 these structures are specified. Furthermore we will look into the sensitivity of the
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Capability Objects, where it is possible to forge a more powerful capability or abuse the
revocation mechanism.

The challenges are a major concern for us, because we want to bind the security of the
physical storage and the system running. Often systems are assumed to always run and
with kernel memory sensitive information can be hidden. This is not possible when saving
all information offline, and a solution is needed.

In the ACRYLICS model CAPM gets input from UM in terms of capabilities and FM in
terms of capability objects, CAPM returns access granted or denied to FM depending if
the capability has the right permission to the capability object.

5.1.3 File Module (FM)

The File module is controlling the file system, but is also responsible for some other
important things. In ACRYLICS the file system is the ACRYLIC File System specified
in Section 5.3, but in theory this could be replaced with other file systems which follow
the same requirements about binding users together between the file system and operating
system. This means that the file module also has to handle all actions about user creation,
deletion and have control over users current capabilities to files on the file system. All this
information should then safely be stored in the file system. The reasoning here is that
it should not be possible to mount the file system, without user credentials for a specific
user, and only that user’s files are accessible. To the best of our knowledge none of the
analyzed systems does this. The analyzed disk encryption features only have one single
master encryption key, where ACRYLICS will have an independent key per user, with the
possibility via the capabilities to share encrypted files with a shared encryption key per
shared file basis.

The File System should of course also handle where data is located on the disk, as well
as manage free sectors. FM, hence the file system, operates on logical sectors and EM
translates logical to physical sectors. So the file system will only know the logical sectors,
and will pass on the request to EM. If FM on a request gets access granted from CAPM
and passes the request to EM, EM will handle the request and return either success/fail
on a write, or the actual data on a read. If access is not granted, then FM will return fail
to UM.

5.1.4 Encryption Module (EM)

EM is the only module who knows encryption keys in the system. EM has an internal
state where all the encryption information is stored. EM has assigned a special part of
the disk where EM stores a Hash-Key-Tree which contains encryption keys and hashes for
integrity of the entire disk. The state is restored on boot, with the boot-password. EM
uses primarily a symmetric encryption scheme, with key material from the Hash-Key-Tree.
If a specific user’s data is encrypted, EM’s key is XORed with the symmetric key derived
from the user’s password, hence the user’s encryption key. Users can themselves choose
another encryption scheme than encryption the scheme used by EM. The combination of
different schemes and key sizes is implementation specific. The root of the hash-key-tree
is encrypted with an asymmetric key pair, like the tree discussed in Section 3.2. EM is
explained in detail in Section 5.4.

EM takes requests from FM and encrypt or decrypt the data depending on a write/read
command. EM then either sends encrypted data to the DM for storage, or gets encrypted
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data from the DM, decrypts it, and sends the decrypted data to FM. EM translates LSI
(Logical Sector indices) to LBA (the physical sector indices).

5.1.5 Disk Module (DM)
DM has access to the physical sectors on the disk. DM gets requests from EM and returns
or writes data to requested physical sectors. DM is only working on encrypted data from
the Encryption Module, so the Disk Module has no knowledge about the data.

The reason why this is called the disk module rather than only the disk, is that we see
it from an operating system perspective, so it could be that there should happen some
architecture specific thing in here, and then interfaces with the physical disk.

5.1.6 Complete Module Structure and Communication Flow
The modules are now introduced and in Figure 5.1 the complete structure is illustrated.
If ACRYLICS’ design is compared to the security levels 1 and 2, the CAPM module is
the difference. CAPM is the central and enforced access control mechanism. Because
there is an enforced capability based access control mechanism as part of the core design,
this design stands out compared to the other analyzed systems. It is a change in the
core design, and ACRYLICS cannot be adopted in the current systems. In the design
discussion in Section 5.7, the security levels 3 and 4 are defined, it will be argued with
examples, how it is a fundamental change in the core design of operating systems.

UM FM

CAPM

EM DM

User Space
Kernel Space

UM: User-Module
FM: File-Module
EM: Encryption-Module
DM: Disk-Module
CAPM: Capability-Module

Figure 5.1: Complete module structure of ACRYLICS

To get more confident with the communication flow, a concrete example of a read request
is illustrated in Figure 5.2.

Following the numbers on the arrows, a read FILE request is made to FM. FM sends the
Capability Object (CAP-OBJ) which is stored with the FILE to CAPM. At the Same
time the user sends the correspondent capability (CAP) to CAPM. CAPM then validates
if CAP grants access to CAP-OBJ, and returns granted or denied back to FM. Based on
the return value FM finishes the request with access denied or continues the process of
reading the data and will at the end return the read data (decrypted by EM) to UM.
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UM FM

CAPM

6. Further process EM and DM

2. Extract CAP-OBJ from FILE and send to CAPM

4. Validate if CAP grants access to CAP-OBJ and send feedback back to FM

1. Read FILE

7. return data or denied

3. CAP-OBJ 5. Granted/Denied

1. Users CAP

User Space
Kernel Space

UM: User-Module
FM: File-Module
CAPM: Capability-Module

Figure 5.2: Read request to a file

5.2 Capability Module in Detail
In this section the structures of ACRYLICS’ capability system are introduced, which are
the functionality in CAPM. The capability system is based on Lopriore’s [42] extended
password capabilities as introduced in Section 2.3. The password derivation-, password
validation- and capability reduction-operations in CAPM follows the pseudo code examples
in Section 2.3.

5.2.1 Capability Subject
A subject is something which holds the capabilities itself, this could be a user on the system
or a program etc. Subjects are also the ones who create capability objects. If a subject has
created a capability object, this would be known as the owner of that capability object.

5.2.2 Capability Object
Everything in the system which requires access rights is considered as an CAP-OBJ
(capability object). This could for example be files, resources or actions, e.g. all files are
capability objects.

Every CAP-OBJ has a type, which for example could be a file. For a given object type
some permissions are defined, for files this could be READ, WRITE and EXECUTE
permissions.

In ACRYLICS CAP-OBJ is defined as follows in Figure 5.3

5.2.3 Capability
For every capability object created the creator gets an owner capability back. The
owner capability is a capability with full permission to the given object. A capability
can be reduced, where a new capability is created with a reduced set of permission. The
reduced capability can be given to another subject and the subject will have the access
rights specified by the reduced capability. A user which has got a reduced capability is
denoted as a shared user.
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Field names Value Comment
Object ID Random 64-bit id Used by the operating sys-

tem to correlate capabili-
ties and CAP-OBJ’s.

Object Type Enum value Every object type defines
permissions for objects of
that type. Follows the the-
ory in Section 2.3

Password Random 64-bit The secret for CAP-OBJ,
this ”password” is used to
construct and validate ca-
pabilities supplied to the
CAP-OBJ. Follows the the-
ory in Section 2.3.

Revocation Table Binary mask with size of a
reduction sub-field

Used to revoke capabilities
of a class. The number of
entries in the table can be
set to some arbitrary num-
ber. Follows the theory in
Section 2.3

Figure 5.3: Definition of CAP-OBJ (Capability Object)

In ACRYLICS a capability is defined as follows in Figure 5.4. Note that the Capability
ID is the same value as the correspondent object’s Object ID. The system stores the
subject’s capabilities in a hash table with capability ID as key. When access to a CAP-
OBJ is wanted, the system can look up in the hash table with the Object ID and find the
capability needed.

Field names Value Comment
Capability ID 64-bit id The value is the same as

the correspondent object’s
Object ID and is used by
the operating system to
correlate capabilities and
CAP-OBJs

Calculated password 64-bit number Generated on capability
creation and is used when
a capability has to be val-
idated. Follows the algo-
rithms introduced in Sec-
tion 2.3

Reduction fields sub-fields with bit size
of how many permissions
the correspondent CAP-
OBJ has

Is the entry index in the
revocation table in CAP-
OBJ. Follows the theory in
Section 2.3

class number Is the entry index in the
revocation table in CAP-
OBJ. Follows the theory in
Section 2.3

Figure 5.4: Definition of CAP (Capability)

5.2.4 Challenges in Non-Improved CAPM

The data in CAP-OBJ is very sensitive. The proposed ACRYLIC File System in Section
5.3 is only supporting the non-improved CAPM scheme and two challenges are seen in this
state. The challenges comes from the requirement that capabilities must be stored safely
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offline on the physical disk, where there is no ”kernel space” to hide sensitive information.
ACRYLICS with the two proposed improvements in Section 5.6 is denoted “ACRYLICS
with improved CAPM”.

With the non-improved CAPM scheme any user can access any shared CAP-OBJ since
these are only protected with EM’s encryption key (Follows from the encryption flow
explained in Section 5.5). Any user in the system is assumed to be able to boot the system
hence knowing the boot-password and can restore the state of EM and hence knows EM’s
encryption key. Non-shared CAP-OBJs are also protected with a user’s password and are
therefore secure against other users. In Subsection 5.2.5 the technical challenges about
the sensitive CAP-OBJ data are examined and in Subsection 5.6.1 an improvement for
the CAPM scheme is proposed. The improvement requires additional information added
to the ACRYLICS File System to support the proposed improvement.

The improvement will defend against any user can access any shared CAP-OBJ, but it will
still be possible for a shared user to access CAP-OBJs shared to that user and possibly
forge a more powerful capability or steal the file. But it will require that a valid user turn
out to be malicious and has physical access to the hard drive.

The other challenge is a user with a revoked capability can exploit the revocation mech-
anism. The challenge is examined in Subsection 5.2.6 and an improvement is proposed.
This improvement will also require some additional data in the ACRYLIC File System to
support the improved CAPM scheme.

5.2.5 Forging Powerful CAP
The outputs in this subsection is from a real test run of ACRYLICS. It is used to illustrate
and describe why CAP-OBJ’s data is too sensitive for a shared user to know. Recall that
a shared user, is a user which has got a reduced capability to some CAP-OBJ.

In Listing 5.1 the data content of a CAP-OBJ is outputted. It includes the CAP-OBJ’s
password. Recall the CAP-OBJ’s password is used to derive reduced capabilities passwords
and is also used to validate the reduced capabilities.

1 |-------------------|--------------------------------|
2 |Capability object: | |
3 |-------------------|--------------------------------|
4 |Object id: | 8de7e81bf854c27c |
5 |-------------------|--------------------------------|
6 |Password: |46e3fbf2abbacd29ec4aff517369c667|
7 |-------------------|--------------------------------|
8 |Revocation table: | Value (only not zero entries) |
9 |-------------------|--------------------------------|

10 |Entry number: 0 | ff |
11 |-------------------|--------------------------------|
12 |Entry number: 1 | f1 |
13 |-------------------|--------------------------------|
14 |Entry number: 5 | f1 |
15 |-------------------|--------------------------------|

Listing 5.1: Output of CAP-OBJ

Listing 5.2 shows a reduced CAP created by the owner of CAP-OBJ (form Figure 5.1).
The reduced capability grants read permission for the shared user to CAP-OBJ.
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1 |-----------------|--------------------------------|
2 |E-Cap: | |
3 |-----------------|--------------------------------|
4 |Capability id: | 8de7e81bf854c27c |
5 |-----------------|--------------------------------|
6 |Reduction field: | ff | 1 | 1 |
7 |-----------------|--------------------------------|
8 |Password: |273e26947eb6e23e9a99bb7e707cc86b|
9 |-----------------|--------------------------------|

10 |Class: |1 |
11 |-----------------|--------------------------------|

Listing 5.2: Output of CAP

A shared user has the knowledge needed to see a shared CAP-OBJ’s data in clear. This
is the case because we assume that any user is able to boot the system, hence knows the
boot-password and can restore the state of EM. In ACRYLICS with the non-improved
CAPM, shared CAP-OBJs is protected with key material only influenced by EM and the
boot-password. The shared user can therefore decrypt CAP-OBJ and access the data if
the shared user has physical access to the disk.

Listing 5.3 shows the process that CAP’s password is derived and validated.
1 Encrypt first sub-field's value from CAP with CAP-OBJ's password as key:
2 CAP sub-field value = 1
3 CAP-OBJ's password = 46e3fbf2abbacd29ec4aff517369c667
4 Calculated password = 92956f701a61a0505fe1f40555da2eb4
5
6 Encrypt value of next sub-field with the current calculated password as key:
7 Next CAP Sub-field value = 1
8 Current calculated password = 92956f701a61a0505fe1f40555da2eb4
9 New calculated password = 273e26947eb6e23e9a99bb7e707cc86b

10
11 For validation compare current calculated password and CAP's password:
12 Calculated password: 273e26947eb6e23e9a99bb7e707cc86b
13 Password from CAP: 273e26947eb6e23e9a99bb7e707cc86b
14 Passwords match: Access granted

Listing 5.3: Derive and validation of CAP on CAP-OBJ

In this case the shared user has access rights ”1” since all sub-fields ANDed together equals
1, this means that the shared user has READ permission. But since the shared user can
see CAP-OBJ in clear, the user can copy the CAP-OBJ’s password to its own CAP and
change the values in the sub-fields to all ones, which would mean full access like the owner
has. See Listing 5.4.

1 |-----------------|--------------------------------|
2 |E-Cap: | |
3 |-----------------|--------------------------------|
4 |Capability id: | 8de7e81bf854c27c |
5 |-----------------|--------------------------------|
6 |Reduction field: | ff | ff | ff |
7 |-----------------|--------------------------------|
8 |Password: |46e3fbf2abbacd29ec4aff517369c667|
9 |-----------------|--------------------------------|

10 |Class: |0 |
11 |-----------------|--------------------------------|

Listing 5.4: Forged CAP with knowledge of CAP-OBJ
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Even worse, the shared user can change data directly in CAP-OBJ, so the shared user
could just change the password completely or change things in the revocation table. For
example, the access for the original owner could be destroyed by changing CAP-OBJ’s
password and the shared user could keep access by updating its CAP accordingly, which
would mean that the shared user has ”stolen” the file.

It is not possible to prevent a valid shared user from exploiting this, since the user has
capability to access CAP-OBJ. However, with the improvement in Subsection 5.6.1, it is
ensured that only a valid shared user can access it, and with the addition improvement
of the revocation scheme, it is guaranteed that a revoked shared user cannot still access
CAP-OBJ’s data in clear, hence securing against a revoked valid shared user.

5.2.6 Abuse of Revocation Mechanism
Normally if a user changes an entry in CAP-OBJ’s revocation table to all zeros; all access
rights for that entry are revoked. The entry is a mask which is ANDed with the CAP’s sub-
fields, and if the result is zero, then all access is denied. Lets say that CAP-OBJ’s owner
makes such a revocation. Remember the owner does not have access to a shared user’s
capabilities, hence the owner cannot physically remove the capability from the shared user,
i.e the shared user still knows where CAP-OBJ is and can still decrypt this because it still
has enough knowledge to see CAP-OBJ in clear. The user can then either change the
revocation table back or find another suitable entry in the revocation table and change its
CAP accordingly.

Even if we assume that a shared user cannot access the CAP-OBJ in clear, nothing prevents
the shared user to modify its own CAP and guessing another entry in the revocation table
that might give the access rights that the user had.

In Subsection 5.6.2 the proposed improvement is preventing this completely.

5.3 ACRYLIC File System
In this section the core structures of the ACRYLIC File System is introduced. The re-
quirement for the file system is to couple users of the file system and operating system
together, such that it is not possible to use the file system without user credentials, hence
binding the security of the offline system with the security of the running system. To do
this it is necessary that the file system directly holds the information about the users, and
not the operating system. The file system should also hold needed information to interface
with CAPM and the capability scheme.

When the system is booted a specific process is followed in order to restore the state of
EM and being able to decrypt relevant disk content. This is referred to as the encryption
flow and is described in further detail in Section 5.5. The most important values for
the encryption flow process are pointed out for each structure. Three dots in a figure
means that the implementation has more values in the structure, but that these values
are implementation specific.

The file system works with LSI (Logical Sector Index). LBA (Logical Block Address)
refers to the real physical sector number. This means that FM uses LSI, and DM uses
LBA. EM knows how to translate LSI to LBA and is explained in Section 5.4.

The point of LSI is that FM doesn’t have to care about where the data is actually stored
physically on the disk. FM can always assume LSI 0 as the first sector, up till LSI n,
where n is the last LSI given the size of the partition.
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The first structure is MFSCI (Master File System Control Information).
MFSCI is the only structure which has a fixed location on the partition. It is always
placed at LSI 0 such that we always know where to find the information and pointers
further into the file system that we need.

Field names value
master_user_table Logical sector index (pointer) to MUT
... ...

Figure 5.5: MFSCI (Master File System Control Information)

The most relevant value in MFSCI, is the pointer to MUT which holds the records of all
users in the file system. It is important to note users are explicitly a part of the file system
and these are the same users used by the operating system, hence there is no security gap
between kernel and file system.

MUT (Master User Table) is a table with MUTE (Master User Table Entry) as entries.
In the reference implementation the table is fixed to a number of 32 users, but this is
implementation specific and could be dynamic, only bounded by the size of the disk to
store user information.

Field names value size (entries)
entry Master User Table Entry 32

Figure 5.6: MUT (Master User Table)

MUTE holds login-information about users. When a user logs in, the hash of the entered
credentials is computed and compared to the stored hash in MUTE.

Field names value
username 64 chars (bytes)
password (hashed) 128 bytes
user_master_information_table Logical Sector index (pointer) to UMIT
... ...

Figure 5.7: MUTE (Master User Table Entry)

Furthermore MUTE has the pointer to the user specific information UMIT (User Master
Information Table), which is encrypted under a symmetric encryption key derived from
the user’s password XORed with EM’s encryption key.

All needed information for a user, is found in the users UMIT. The pointers to UCT and
RDT, and the user’s specific Encryption Settings are the most important values in the
UMIT. Users can have different specific encryption settings, these will only be used for
the user’s own files.

UCT (User Capability Table) stores at least all file-capabilities for a user and is an
arbitrary long list of CAP’s. Important to note; capabilities for operations in the operating
system kernel (syscalls) does not necessarily have to be stored here. The operating system
can easily store these in files created and managed by the operating system. However
capabilities for files itself are required by the file system to handle file access, and are
therefore stored as a part of the file system.

Every user has its own RDT (Root Directory Table). This is a DT (Directory Table) but
is the root of the file hierarchy and is therefore special. The LSI for RDT is found in the
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Field names value
master_user_table Logical Sector Index (pointer) to RDT
capability_table Logical Sector Index (pointer) to UCT
encryption_type Enum value
encryption_algorithm Enum value
encryption_mode_of_operation Enum value
encryption_key_size Number
encryption_key Saved in bytes
... ...

Figure 5.8: UMIT (User Master Information Table)

user’s UMIT. From RDT a user can reach all its own data, inclusive files shared with the
user.

The DT holds entries DTE (Directory Table Entry). In the reference implementation the
number of entries are set to 16, but this can be improved to be arbitrary.

Field names value size
entries Table of DTE’s 16 entries
... ... ...

Figure 5.9: DT (Directory Table)

DTEs contain the name of an object, for example the name of a file or directory. The field
table_entry_object_index holds the LSI for the specific object.

This means if an object is shared, then different users will have a different entry in their
own DT, but the pointer to the object would be the same, hence the object pointed to
is exactly the same for the parties, and their individual capability are therefor checked
against the same object and can lead to different access rights.

Field names value
object_name 256 chars (bytes)
entry_object_kind enum
table_entry_object_index Logical Sector Index (pointer) to A-OBJ
... ...

Figure 5.10: DTE (Directory Table Entry)

A-OBJ (ACRYLIC Objects) are the objects in the ACRYLIC File System. Any A-OBJ
holds a CAP-OBJ in its structure and A-OBJ can be seen as a CAP-OBJ with some
additional data, as illustrated in Figure 5.11.

Field names value size
capability_object_block CAP-OBJ size of CAP-OBJ
... ... ...

Figure 5.11: A-OBJ (ACRYLIC Object)

5.4 Encryption Module in Detail
In this section EM is presented in detail. In Subsection 5.4.1 the formatting process is
explained and the hash-key-tree is introduced and it is shown how it is constructed. The
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space overhead of the hash-key-tree is also considered. In Subsection 5.4.2 the read and
write process for EM and below is explained.

5.4.1 Formatting the Partition
When the partition is formatted, some initial setup is required. In Damgaard and Dupont
[21] it is suggested to use a hash-tree to handle integrity for the entire disk. The parent
node contains the hash values for its child nodes. So on every update of a child, a new
hash is calculated and updated in the parent, and this process happens from a leaf to the
root, where the leaf holds the hash of a data sector.

It is also suggested in Damgaard and Dupont [21] to use different encryption keys in a
similar tree structure. The leaf is encrypted with some random chosen key, the parent will
save this key and the parent is encrypted with another random chosen key as well. This
process also happens from leaf to root. This means that one has to be able to decrypt
the root node to know any information on how to proceed decrypting the disk. As stated
in Damgaard and Dupont [21] this ensures that if an adversary gets a snapshot of EM’s
state, it can only decrypt the current content on the disk and not data written after the
snapshot was taken. Although it is possible for the adversary to produce new content
to the disk until the next reboot, because the adversary knows the current state of EM
and can update the state properly. But when the system is rebooted the private key is
needed to decrypt the root node, and the private key is not held in EM’s state, hence the
adversary does not know the private key, and cannot decrypt the root node after a reboot.

In both trees it is suggested that an asymmetric key pair is used to encrypt the root node
with the private key and generate a MAC for the root node. The public key is held in
EM’s state, such that EM can continuously encrypt the updated root nodes. Recall the
root nodes will be updated on every write to the file system. Once the root nodes are
decrypted with the private key at boot, the private key is erased in memory, such that
the running system does not know the private key. The chosen boot-password is used to
derive a symmetric encryption key to encrypt and decrypt this asymmetric key pair and
calculate the MAC.

The boot-password can easily be changed, since the asymmetric key pair can be re-
encrypted with key derived from the new password.

Hash-Key-Tree
In ACRYLICS the two trees are combined to the Hash-Key-Tree with three purposes.
The Hash-Key-Tree is a b-plus tree and will hold the HASH value of its child node, the
KEY to decrypt its child and the IV for the symmetric block encryption.

In Damgaard and Dupont [21] they are handling the situation about IV’s differently as
the mode of operation is assumed to be CBC, and by that some tricks can be done so
the IV itself is not stored, but ends up with an extra cipher block instead. The extra
chiper blocks are collected together in some physical sectors. However ACRYLICS want
the ability to choose any arbitrary mode of operations, and it is therefore important to
save the IV itself. The IV fits very well in the Hash-Key-Tree’s design. On a decryption
all the data needed is together in the particular node.

Recall that LBA sectors are the physical sectors on the disk. In the report and the
reference implementation the physical sector size is fixed to be 4096 bytes. EM translates
LSI (logical sector index used by FM) to LBA which EM uses. LBA-sector size is often
seen as 512 bytes, which is the older standard. The standard is moving towards a sector
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size of 4096 bytes. In the case the system has a disk with LBA-sector size of 512 bytes, DM
can be implemented to see the incoming LBA as size of 4096 bytes and then read/write 4
times 512 bytes for every read/write.

LSI-sectors size is chosen to be 8192 bytes. LSI 0 will always start at the first even LBA
sector after the tree.

In the reference implementation every node in the Hash-Key-Tree has 64 entries with
information to 64 child nodes. The reasoning about this comes from the LBA-sector size
and size of the entries. As discussed the size of a LBA-sector is 4096 bytes, as each entry
in the nodes are 64-bytes (see Figure 5.12), there is room for 64 entries in one LBA-sector
4096bytes
64bytes = 64 entries and hence every node in the Hash-Key-Tree is therefore exactly the

same size as a LBA-sector.
Field names Value Comment
HASH 16 bytes Hash or MAC of the child
KEY 32 bytes Random key chosen on ev-

ery encryption. Max key
size of 256 bits.

IV 16 bytes Random chosen IV up to
128-bit which is the size of
an AES-block-size

Figure 5.12: Definition of node entries

At formatting time the size of the partition is known and the size of the Hash-Key-Tree
can be calculated statically. Pointers to the children are not needed because their location
also can be calculated statically. Figure 5.13 illustrates the Hash-Key-Tree. Note that
the figure already contains some user data, on a freshly formatted system it would only
contain MFSCI and MUT, but to use the system at least one user is required, which
creates UMIT, RDT and UTC for that given user.

Additional Special Sectors
EM has some additional special sectors before the actual Hash-Key-Tree on the disk. In
Figure 5.13 these are denoted EMh, EMc and EMj . In Damgaard and Dupont [21] it is
suggested that there can be a journaling and/or a Caching level below EM. EMc (cache
layer) and EMj (journaling layer) are optional in ACRYLICS and is not designed, however
the design considers room for implementing a solution at a later point. EMh is EM header
data. This include for example how many sectors there are use for EMc and EMj . In the
reference implementation both of these are set to zero. EMh also contain data about the
LBA position on the disk, the size of the partition and the encryption settings for EM.

Most data in EMh is encrypted with by the key derived from boot-password. But EM
needs to know the encryption algorithm used for the encrypted data in EMh to being
able to decrypt. Therefore EM need some information about the encryption algorithm
in unencrypted form, an therefore is the very first part of EMh not encrypted. The non
encrypted part only tells about the partition position on the disk and encryption settings,
and does not reveal any sensitive data.

In EMh’s encrypted part the LBA offset to LSI 0 is stored. This is given to EM on every
boot, so on a write request to a logical sector, EM knows how to calculate the LBA address
that DM should write to, i.e. LSI · 2 + LBA offset.

In Figure 5.13 the Hash-Key-Tree nodes is marked with blue, and the Hash-Key-Tree
structure is shown in the top of the figure, and it is shown how the nodes are stored on the
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disk below. Marked with yellow is a path in the tree used in the example in Subsection
5.4.2.

nroot is the root of the Hash-Key-Tree. Recall nroot is encrypted with a public key pair.
The public key pair and the MAC for nroot is also stored in the encrypted part of EMh.

n1 n2 ... n64

LSI HASH KEY IV LSI HASH KEY IV . . . LSI HASH KEY IV

NODE HASH KEY IVnroot:
n1 0x81 0x82 0x83
n2 0x25 0x26 0x27
... ... ... ...... ... ... ...
... ... ... ...
... ... ... ...
n64 0xFE 0xFD 0xFB

nroot:

n1: n2: n64:
0 0x11 0x12 0x13
1 0x44 0x45 0x46
2 0x77 0x78 0x79
3 0x22 0x23 0x24
4 0x91 0x92 0x93
5 0x33 0x34 0x35
... ... ... ...
63 0xAA 0xAB 0xAC

64 0x66 0x67 0x68
65 0x81 0x82 0x83
... ... ... ...... ... ... ...
... ... ... ...
... ... ... ...
... ... ... ...
... ... ... ...

127 0xDD 0xDE 0xDF

4032 0x22 0x23 0x24
4033 0x55 0x56 0x57

... ... ... ...... ... ... ...... ... ... ...

... ... ... ...

... ... ... ...

... ... ... ...

... ... ... ...
4095 0xBB 0xBC 0xBD

EM header decrypted with boot-password
EM hash tree
EM hash optinal
EM hash tree path
Encrypted sectors
Decrypted by KEYEM

Decrypted by KEYEM⊕ KEYu1

MFSCI

0

EMh

LBA: 1

EMh
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EMc
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EMj

2

nroot
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n1
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n2
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n3
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n9

...
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...

64

n62

65

n63

66

n64

67

x

LSI:

68LBA: 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
0LSI: 1 2 3 4 5 6 7 8 9

MUT UMITu1 RDTu1 UCTu1 UMITu2 RDTu2 UCTu2 FILE1u1 FILE2u1

FILE1u2

88LBA: 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
10LSI: 11 12 13 14 15 16 17 18 19

FILE2u2 FILES DATAf1−u1 DATAf2−u1 DATAf1−u2 DATAf2−u2 DATAS free free

Figure 5.13: Complete overview on Encryption Module

Space Overhead

Space overhead is a concern when introducing extra structures like the Hash-Key-Tree.
By calculating the size of the tree and how much space the tree is pointing to, the space
overhead can be calculated.

In the example in Figure 5.13 there is 65 nodes in the Hash-Key-Tree, this means 65 ·4096
bytes = 266,240 bytes is used for the Hash-Key-Tree. As 64 of the nodes each points to 64
leafs (logical sectors with data) the Hash-Key-Tree can reach 64 ·64 = 4096 logical sectors.
Recall that the logical sectors is defined to be 8192 bytes, hence the Hash-Key-Tree can
reach 4, 096 · 8, 192 = 33,554,432 bytes.

The overhead is then 266,240bytes
33,554,432bytes = 0.0079%.
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The general formula for overhead can be calculated by the formula given in Equation 5.1
given the height h of the tree gives the overhead o. The overhead will always remain
around 0.0079% with the sector sizes chosen here.

(
∑h

n=0 64
n) · 4096bytes

64h · 64 · 8192bytes
= o (5.1)

The structural overhead in CryFS is calculated to 0.05% [45], so we should not be con-
cerned about the Hash-Key-Tree overhead. Commonly the overall overhead of file systems
are estimated to 3-5%. However it is difficult to say how the overhead should be calcu-
lated and which structures it should contain, so it would require a real investigation in file
systems overhead to get concrete results.

However, the free sector allocation meta data is not implemented in the ACRYLIC File
System yet and would definitely contribute to the final overhead of the entire ACRYLICS
system, but the final overhead is not expected to be larger than the other systems.

5.4.2 Read and Write in EM and Below
With Figure 5.13 as the starting point, assume that user1 wants to read RDTu1. FM
issues a read request for LSI 3, where RDTu1 is located. EM’s job is to translate LSI to
LBA, issue a read request to DM for the LBA and decrypt the data DM sends back.

In this case it would be 3 · 2+66 = 72 LBA, EM request DM for the data located at LBA
72. EM gets the data and will decrypt it. To get the KEYEM that was used to encrypt
this block, EM has to traverse the tree. Starting from the root node, EM checks that LSI
3 is smaller than 64, and follows the first child node, the first child node is denoted n1 and
marked with yellow in Figure 5.13.

If n1 is not cached into memory, EM has to ask DM to read and return the data in LBA
1, which is the LBA address for n1. n1 is ofcourse encrypted, but EM can get the key
from the n1’s entry in nroot, marked with yellow in the figure. EM can validate the hash
of n1 with the hash from the entry in nroot and use the KEY and IV to decrypt n1.

Since n1 is pointing to leaves, EM looks up the entry for LSI 3. EM can validate the hash
form LSI 3, and can find KEYEM and IV which are used to decrypt LSI 3. Since LSI 3 is
user1’s data, EM XOR’s KEYEM with KEYu1 to get the effective encryption key. With
the effective encryption key and the IV, EM can decrypt the data and send the decrypted
data back to FM.

If we assume that user1 updates RDTu1 and wants to write it back to the disk, EM gets
a request to write RDTu1 back to LSI 3. In this case EM will generate a new random key
to be KEYEM and XOR this with KEYu1. A new IV is also randomly generated and the
data are encrypted with the effective key and the IV.

EM requests DM to write the encrypted data to LBA 72, calculated as before. EM has to
update the tree and will write the updated KEY, IV and HASH into the LSI 3 entry in
n1, if the node is not cached, we have to decrypt the path in the tree as we did when we
read the sector.

When n1 has been updated the parent has to be updated, i.e. nroot. We generate a new
key to encrypt n1 and a new IV. Encrypt n1 and calculate the new HASH, and update
the entry for n1 in nroot with the new values.

As discussed earlier nroot is encrypted by the public key of EM and a new MAC is calculated
and stored.
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5.5 ACRYLICS Encryption Flow Process
In this section the encryption flow is described in detail. Recall that MFSCI is the only
structure with a fixed position, namely at LSI 0. MFSCI contains the LSI of the next
structures needed in the boot process.

The same snapshot of the file system as in Figure 5.13 is used, this snapshot is used
throughout the rest of this Chapter. The structures and data in the snapshot are placed
in one arbitrary way. All other sectors than MFSCI could be located in any order.

The snapshot has two users, u1 and u2. Both users have two personal files, FILE1u1,
FILE2u1 and FILE1u2, FILE2u2 respectively. The two users share a file, FILES . All files
are A-OBJ’s.

5.5.1 Step 1 - Booting with EM Key
Initially the system is not running and anything on the disk is encrypted, hence no plain
text data can be derived. On system boot, the system will ask for the boot-password which
derives the key to restore EM’s state and EM’s encryption key KEYEM , recall Section
5.4. As discussed in Section 5.4, KEYEM is not just a single key, but is found via the
Hash-Key-Tree. In the encryption flow model KEYEM refers to the correspondent key
found in the leaf’s entry for the correspondent Logical Sector.

KEYEM can decrypt MFSCI and MUT as illustrated in Figure 5.14.

MFSCI

0LSI

MUT UMITu1 RDTu1 UCTu1 UMITu2 RDTu2 UCTu2 FILE1u1 FILE2u1

9

FILE1u2

10

FILE2u2

LSI

FILES DATAf1−u1 DATAf2−u1 DATAf1−u2 DATAf2−u2 DATAS free free

19

Encrypted sectors
Decrypted by KEYEM

Figure 5.14: Step 1 - KEYEM decrypts MFSCI and MUT

5.5.2 Step 2 - Enter User Credentials for Active Session User
When MUT is loaded in step 1, the system will ask for credentials for a user to login. The
entered credentials will be validated from the data in MUT. When a user is logged into
the system and makes an action, the user is considered as the active session user.

Figures 5.15 and 5.16 show the state of decryption if the credentials is entered for u1 or
u2 respectively.

MFSCI

0LSI

MUT UMITu1 RDTu1 UCTu1 UMITu2 RDTu2 UCTu2 FILE1u1 FILE2u1

9

FILE1u2

10

FILE2u2

LSI

FILES DATAf1−u1 DATAf2−u1 DATAf1−u2 DATAf2−u2 DATAS free free

19

Encrypted sectors
Decrypted by KEYEM

Decrypted by KEYEM⊕ KEYu1

Figure 5.15: Encryption state step 2 with u1 credentials
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MFSCI

0LSI

MUT UMITu1 RDTu1 UCTu1 UMITu2 RDTu2 UCTu2 FILE1u1 FILE2u1
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FILE1u2
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FILE2u2
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FILES DATAf1−u1 DATAf2−u1 DATAf1−u2 DATAf2−u2 DATAS free free
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Encrypted sectors
Decrypted by KEYEM

Decrypted by KEYEM⊕ KEYu2

Figure 5.16: Encryption state step 2 with u2 credentials

When the active session user is logged in, it has access to its RDT. From the RDT the
user can start reading files and directories which the user has access to.

Let’s look at u1’s RDT, see Figure 5.17, and note the LSI for FILES . Remember that
FILES is a shared file between the two users. We assume that u1 is the owner, hence
CAPfs−u1 is the owner capability for FILES .

File name LSI to A-OBJ Capability to access A-
OBJ (Held by the Operat-
ing System Kernel)

FILE1 8 CAPf1−u1

FILE2 9 CAPf2−u1

FILE 12 CAPfs−u1

... ... ...

Figure 5.17: RDT u1

If we look at RDT for u2 in Figure 5.18, the LSI pointer to FILES is also 12 and points
to the exact same A-OBJ as in u1’s RDT.

However u2 has its own reduced capability CAPfs−u2 which only provides reduced access
rights to the A-OBJ.

File name LSI to A-OBJ Capability to access A-
OBJ (Held by the Operat-
ing System Kernel)

FILE1 10 CAPf1−u2

FILE2 11 CAPf2−u2

FILE 12 CAPfs−u2

... ... ...

Figure 5.18: RDT u2

5.5.3 Step 3 - Reading Data from Files
In this subsection the procedure for reading data from files is now described. We will first
see an example of reading data from a non-shared file, and then an example of reading
from a shared file.

Reading data from a non-shared file
Let’s imagine that u1 wants to read the data, DATAf2−u1, from FILE2u1.

u1 issues the read request to FM. FM finds the path for FILE2u1 in the directory tables.
From the RDT in Figure 5.17 we see that FM needs to read A-OBJFILE2u1 from LSI 9
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and from the A-OBJ extract CAP-OBJFILE2u1 . A-OBJFILE2u1 is encrypted by the user’s
encryption key, KEYu1. EM have access to KEYu1 since u1 is active in the system, so FS
asks EM to get the content for the block containing A-OBJFILE2u1 . EM decrypts it with
KEYEM⊕ KEYu1.

From the decrypted A-OBJFILE2u1 FM extracts CAP-OBJFILE2u1 and proceed with the
request by providing this to CAPM. Alongside u1 provides CAPf2−u1 to CAPM (recall
Figure 5.2). CAPM can now validate if u1 have the permissions to read the content of
FILE2u1.

In this example access is granted. FM passes the last part of the encryption key to EM. In
the case where the file is non-shared, the correspondent CAP-OBJ’s password is used as
the last part of the encryption key. So in the example CAPf2−u1’s password is the last part
of the effective encryption key, hence the effective encryption key to decrypt DATAf1−u2

is KEYEM⊕ KEYu1⊕CAP-OBJFILE2u1 ’s password. This is illustrated in Figure 5.19.

EM decrypts DATAf1−u2 with the effective key and return the plain data to FM and FM
can complete the request.
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Figure 5.19: Encryption state step 3 u1 reads FILE2u1

Reading data from a shared file
When reading data from a shared file all subjects which have a capability to the object
need to be able to decrypt it. In particular A-OBJ is the problem. A-OBJ is in the non-
shared case encrypted with the user’s password XORed with KEYEM . A-OBJ is needed to
extract CAP-OBJ such that FM can give this to CAPM for validation, and importantly
the extracted CAP-OBJ’s password is used to decrypt the data A-OBJ points to. So
without the decrypted A-OBJ, it is not possible to decrypt the data at all.

Let’s consider that u2 wants to use its read only-permission to read the shared FILES

owned by u1. The two users must agree in a way to decrypt A-OBJFILES
. The non-shared

approach would be to use either KEYEM⊕ KEYu1 or KEYEM⊕ KEYu2 to decrypt A-
OBJFILES

. But this cannot be the case since u1 does not, and must not know u2’s
key and vica versa. So the naive approach is to let EM use its key, KEYEM , as an
independent authority. Both users can now get access to A-OBJFILES

and can continue
as the procedure in the non-shared case, where CAP-OBJ’s password is used as part of
the key to decrypt the data. So CAP-OBJFILES

’s password⊕ KEYEM gives the effective
encryption key to decrypt DATAS . This is illustrated in Figure 5.20

However, with this scheme we can observe that any user on the system which knows
KEYEM will be able to decrypt the content of A-OBJFILES

and hence also be able to
decrypt the data. Even users that do not have a capability for the file.

We can also observe that u2 has access to the decrypted A-OBJ and hence knows CAP-
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Figure 5.20: Encryption state step 3 u2 reads shared FILE

OBJ’s password and can construct a more powerful capability or can steal the file from
the original owner. Recall the discussion about sensitive CAP-OBJ data in Subsection
5.2.4.

5.6 Improvement of CAPM Scheme
In this section improvements are proposed to observations made last in Section 5.5. The
issue about whether any user can access a shared CAP-OBJ can be solved, and the im-
provement is described in Subsection 5.6.1.

It is not possible to prevent a valid user from being malicious, however, it is possible to
revoke a user’s capability, such that a revoked user can no longer decrypt CAP-OBJ, and
modification of CAP-OBJ is prevented. It is also prevented so that the user can modify its
own CAP and guess another entry in the revocation table which could give the capabilities
back. This improvement is described in Subsection 5.6.2.

As mentioned before, ACRYLICS with these two improvements integrated is denoted as
”ACRYLICS with improved CAPM”.

5.6.1 Shared Object - Shared Secret

At Figure 5.20 we saw the naive approach, where EM’s keys were used to encrypt and
decrypt the shared A-OBJ. Since we assume that KEYEM is known by all users, this
cannot be considered safe. However we know from the analysis in Chapter 4, that most
modern computers have a built-in security chip e.g. the TPM (Trusted Platform Module).
We know the TPM is designed to hold and use encryption keys securely without anyone
being able to know the keys.

Assume if we would make use of the TPM and let it manage EM’s key. This would mean
that only the TPM would be able to encrypt and decrypt shared A-OBJs from where
the sensitive CAP-OBJs are derived. Since no user would be able to decrypt the data
directly from the offline physical storage, this would infer some security and could solve
the problem. However, there would also be consequences and concerns by doing this. The
most concerning would be that the data is bound to the hardware and ACRYLICS would
require systems to have a TPM. From the analysis in Chapter 4 some weaknesses about
the use of the TPM chip are also raised and one could imagine that other attacks suddenly
were possible.

For example if an attacker somehow could get access to the encryption key or with some
extreme privileged escalation could ask the TPM for decryption. This would not only
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compromise the active user, but any shared content would be exposed for decryption,
because it only relies on KEYEM .

Introducing the Shared Secret
A shared secret is needed between sharing parties and it has to be bound to a CAP-OBJ.
When a CAP-OBJ is created the owner will get a random generated secret and the owner
capability back. The owner can then distribute it when generating and sharing reduced
capabilities. Each shared user can encrypt the shared secret with their own encryption
key, and the shared secret will be stored safe, and only the shared users know it.

The shared secret is combined with KEYEM . secret⊕KEYEM will be the effective en-
cryption key for the shared A-OBJ which contains the sensitive CAP-OBJ.

The secret is added to the user’s DTE from Figure 5.10, the modified structure is illustrated
at Figure 5.21. The secret will have the size of the encryption key chosen for the encryption.

Field names value size
object_name chars 256 bytes
entry_object_kind enum 2 bytes
table_entry_object_index LSI (pointer) 8 bytes
capability_object_secret random number size of encryption key
... ... ...

Figure 5.21: Modified Directory Table Entry structure

In Figure 5.22 the updated encryption flow using the shared secret is illustrated.

With the shared secret it is only possible to read and decrpyt A-OBJFILES
, with a DTE

containing the correct secret. An adversary only knowing KEYEM will no longer be able
to decrypt the data, and the issue is solved. It now requires some specific knowledge to
read a shared file.
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Figure 5.22: Updated encryption state step 3 u2 reads shared FILES

It could also be considered if CAPM could have a secret key (KEYCAPM ) stored in a
hardware module like the TPM. Then all CAP-OBJ’s and CAP’s in the system could be
encrypted with KEYCAPM . If we look at the encryption state in Figure 5.20, this would
actually improve the situation since CAP-OBJFILES

would be encrypted and an adversary
would not be able to forge a CAP, because CAP-OBJFILES

’s password is encrypted with
the not known KEYCAPM . However, adversaries would still have some access to A-OBJ’s
data which we don’t want to allow. But with the proposed shared secret improvement, then
the proposed improvement would prevent outsiders from accessing A-OBJ and KEYCAPM

would prevent adversaries and malicious users from accessing the sensitive CAP-OBJ data.
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In practice, this would again imply that a hardware module like the TPM is required, and
as discussed before we don’t want that dependency. But in an environment where extra
security is wanted and TPM is available, this solution could be worthwhile to investigate
further.

5.6.2 Add Seals to the Revocation Table
The shared secret improvement prevents users from accessing shared A-OBJs which are not
allowed. But a shared user with a valid capability can still decrypt A-OBJ and get access
to the sensitive CAP-OBJ. As mentioned before a malicious user cannot be prevented,
but in this subsection an addition to the revocation scheme is proposed, to make sure that
only users with an active capability (a capability which has not been revoked) can access
the sensitive data.

The proposed improvement is an addition to the revocation table in CAP-OBJ. We want
to encrypt CAP-OBJ inside A-OBJ, but want an unencrypted part of the revocation table
containing seals, but still stored in A-OBJ. A new “encryption secret” is added and is the
encryption key used to encrypt and decrypt CAP-OBJ. We denote the new encryption
key as EncKey.

A seal is a bit string which is XORed with EncKey. A shared user will have a sealed
version of EncKey, and only if the same seal is used to unseal, the real EncKey is revealed.
The idea to seal the encryption keys came with inspiration from Dan Mossop and Ronald
Pose’s [52] ”Information Leakage and Capability Forgery in a Capability-Based Operating
System Kernel”. If the rules about the seals are designed carefully, it is a strong addition
to the revocation scheme.

With the proposed seal improvement a user with a revoked CAP is prevented from access-
ing the sensitive CAP-OBJ, and can no longer forge capabilities or manipulate CAP-OBJ
when revoked. The chance of guessing another entry (seal) that will work, would be the
same probability as guessing EncKey itself, which is with negligible probability. It is not
possible to prevent the user from being able to decrypt A-OBJ, but the added EncKey
is also used to encrypt and decrypt the data A-OBJ is pointing to. So far CAP-OBJ’s
password has been used as a part of the data encryption key. However it is not possi-
ble to change a CAP-OBJ’s password, as it would invalidate all reduced capabilities to
the CAP-OBJ. A revoked user could have stored CAP-OBJ’s password and would then
be able to decrypt the data. However EncKey can be changed, so if a class is revoked
completely in the revocation table, EncKey is changed, the data is re-encrypted with
KEYEM⊕ EncKey, and the revoked user can no longer decrypt the data.

The updated encryption flow with the seal improvement is illustrated in Figure 5.23
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Figure 5.23: Updated encryption state step 3, with use of the seal improvement, u2 reads
shared FILES

Extend DTE with Encryption Secret
The DTE from Subsection 5.6.1 are extended with the cap_obj_encryption_secret
field, which is used to store EncKey or a sealed version of EncKey.

The newly added part of the revocation table is needed in clear text inside A-OBJ, since
the seals are used to unseal the EncKey which is used to decrypt CAP-OBJ. Remember
that A-OBJ is still encrypted as the shared secret improvement suggested.

When a new CAP-OBJ is generated a random encryption key are generated and given to
the owner, and is stored in the user’s DTE in the cap_obj_encryption_secret field.
This is the real unsealed encryption key, EncKey. We assume that the owner will always
be able to decrypt the object and is therefore seen as the authority and holds the real
unsealed encryption key in its DTE. Shared users will have a sealed version of EncKey
stored in the cap_obj_encryption_secret field.

Field names value size
object_name chars 256 bytes
entry_object_kind enum 2 bytes
table_entry_object_index LSI (pointer) 8 bytes
capability_object_secret random number size of key size
capability_object_encryption_secret random number size of encryption key
... ... ...

Figure 5.24: Modified Directory Table Entry structure

Defining Sealing Rules
The sealing rules are now defined and the following terminology is used in the equations.

• EncKey = The random generated unsealed encryption key used to encrypt and
decrypt the sensitive CAP-OBJ.

• Password = The password supplied from a user’s CAP.

• revocation[class] = The seal in the unencrypted part of the revocation table in
CAP-OBJ, where class refers to the index in the revocation table. The value is in
CAP’s class field.

• Secret = The additional proposed encryption secret in DTE. For the owner this is
the EncKey, for other users this will be the Secret as is described in the following

• MasterSecret = Password ⊕ Secret
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EncKey derivation
The owner of an object has direct access to the EncKey stored in DTE as already dis-
cussed. Shared users has to derive EncKey as follows:

EncKey = Password⊕ Secret⊕ revocation[class] (5.2)

Add a Class to Revocation Table
A new entry in the revocation table is created at the same moment as the first reduced
capability for a given class is created. A random number for Secret is generated and
is handed out to the user of the newly reduced capability. The creator of the reduced
capability already knows EncKey. Password is derived as normal when creating a reduced
capability. With this information the new seal can be calculated for index class in the
revocation table as follows:

revocation[class] = Password⊕ Secret⊕ EncKey (5.3)

Derive Encryption Secret From Existing Class
If the class decided for a reduced capability already exists, the Secret is derived as follows
in Equation 5.4 and is given to the user. Password is derived as normal when creating
a reduced capability. The creator of the reduced capability already know or can derive
EncKey and can therefore calculate the secret as follows:

Secret = Password⊕ revocation[class]⊕ EncKey (5.4)

Revoke a Class
On a class revocation, the bits in the revocation table at the index class are scrambled.
A new random EncKey is generated and A-OBJ and the data pointed to by A-OBJ is
re-encrypted. As EncKey is changed, all existing CAP’s to other classes will result in a
wrong derivation. So these have to be updated.

Password, Secret and EncKey are used to calculate the revocation entries. The Password
and Secret are only known by a user itself and nobody else. We don’t want anyone else
to know this information, because that is sensitive information.

However with the proposed construction all entries in the revocation table can be fixed
without knowing Password and Secret for all the other shared users.

In the following equations we see that the MasterSecret can be derived for any class in
the revocation table. The MasterSecret is used to calculate the new seals for every entry
in the revocation table, which makes sure that any shared user will drive the new EncKey
correctly and retain the access.

MasterSecret = Password⊕ Secret (5.5)
EncKey = Password⊕ Secret⊕ revocation[class] (5.6)
EncKey = MasterSecret⊕ revocation[class] (5.7)

MasterSecret = revocation[class]old ⊕ EncKeyold (5.8)
revocation[class]new = MasterSecret⊕ EncKeynew (5.9)
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From Equation 5.8 and Equation 5.9 we see that only the old EncKey and the old revo-
cation table are needed to calculate a class’s MasterSecret. This is exactly what a user
with an active capability will know.

This means that a user can change EncKey, calculate the new revocation table and
scramble revocation[class] for the class to revoke.

If a user supplies a CAP with a class which has been revoked, then the calculation for
EncKey will result in some random bits, and CAP-OBJ cannot be decrypted properly.
CAPM will reject the capability and the user will not be granted access and cannot decrypt
the data pointed to by A-OBJ, since it also requires the correct EncKey.

This also prevents a user with a revoked capability to change anything in CAP-OBJ or
to forge a new valid capability. Even though the revoked user can see the unencrypted
revocation table, it is still not possible for the revoked user to calculate the new EncKey.
This is true because one has to know revocation[class] and either Secret or EncKey to
be able to calculate one or the other, and the user does not know either Secret or the new
EncKey. The probability of guessing any of the values would be the same probability as
just guessing the encryption key itself, which is negligible probability.

Final Suggestions
A user with a valid CAP to some CAP-OBJ will still know CAP-OBJ’s password. The
user is still able to forge a CAP with a full permission set or modify CAP-OBJ, as we saw
in Subsection 5.2.4. But where a user before with a revoked capability could construct
and/or modify CAP and CAP-OBJ, it is now only a user with an active capability and
who knows the active EncKey which can do it.

If ACRYLICS should defend against a malicious user, some form of external authority is
needed. It could be in the form of the TPM as discussed earlier with a secret KEYCAPM ,
or a completely external CAPM could be used as we know it from certificate authorities
and TLS handshake. In this way the capabilities would only appear encrypted for the
users, and would only be decrypted at the authority where access would be validated, and
access granted or denied would be returned.

The solution would most likely bring a lot of other challenges into play, but if security is
needed in a larger organization, this could be the way to go.

Lastly, a revoked user still has some information about CAP-OBJ’s password and would of
course still know all the information which is in its own CAP. It also knows the shared secret
to decrypt A-OBJ. Therefore it is suggested that the final solution should let EncKey
encrypt the A-OBJ, such that a revoked user knows as little as possible. Of course the
additional part of the revocation table still has to be unencrypted, but this should not
lead to security concerns, since it will just appear as random bits. One should note that
the encryption we purpose with CAP-OBJ and A-OBJ is happening above EM and the
requirement for EM security is still fulfilled with the encrypt purposed in Section 5.6.1,
this would guarantee security against outsiders, and then the encryption above EM would
protect against a revoked user.
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5.7 Design Discussion and Security Analysis
In this section the design choices are discussed and security levels 3 and 4 are defined and
it will be shown why ACRYLICS is in another security level.

When security levels 1 and 2 were designed, the starting point was some attacks which suc-
cessfully could be used against systems in these levels. First will be shown that ACRYLICS
prevent these attacks and this defines Security Level 3, then we will come up with a specific
attack against the ACRYLICS system, which makes room for improvement. In Security
Level 4, the best security level, these attacks will be prevented, and we will discuss what
types of attacks cannot be prevented.

5.7.1 Security Level 3 - ACRYLICS

Security Level
Level 4: ACRYLICS
With improved capability module
Level 3: ACRYLICS
Level 2: Full Disk Encryption
Level 1: No Disk Encryption

Figure 5.25: Security Level 3

It is easy to state that ACRYLICS are at least in
Security Level 2, since the system have full disk en-
cryption by default.

We left off Security Level 2 with privilege escalation
attacks, and saw that transparent encryption is ac-
tually not as good as it sounds. We also saw that if
someone can get the encryption key then all of the
solution that we have analyzed is broken since they
only use one single master key for the encryption.

In Figure 5.26 attacks against ACRYLICS is illustrated. In the left side we see the UM
privileged escalation box, but it is claimed to be prevented. why?

The ACRYLICS design uses capabilities and there is no overall root. So even though
ACRYLICS often will have some ”System Root User” this will not lead to privileges
where the entire system is broken. Files and data for all other users are safe, because it is
encrypted with their own key.

It would probably still be the worst case if the ”System Root User” was compromised
completely, as it would most likely have access to operating system files, but at least
ACRYLICS secures other users data.

However we should consider how such a privileged escalation could appear. Recall the
HAFNIUM attack introduced in Security Level 2, Subsection 4.4.2. We should not consider
the attack concretely but the fact that some service is running and is exposed towards the
network. If the service was run by another user than ”System Root User” in ACRYLICS,
it would be a good case. If the service was compromised, it would never go worse than
the service user was compromised. ”System Root User” and other users files would be
safe. But even if the service was run by the ”System Root User”, it should be underlined
that the service itself are given the capabilities needed to perform the service. Recall
that programs are also Subjects in the capability scheme and hence also have to provide
capabilities to CAPM.

If the service has been given capabilities according to principle of least privileged as intro-
duced in Section 2.1. The compromise would only affect the smallest part of the system
possible and hopefully this would not include the core system files.

If a worst case privileged escalation attack should be performed, the attack would need to
steal the capabilities from the other users. But as a user’s capabilities are encrypted with
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Figure 5.26: ACRYLICS

the user’s key, it is almost impossible to steal capabilities from other users, and certainly
from multiple users, since every user uses its own key to encrypt.

We should also consider the Cold Boot Attack introduced in Security Level 2, Subsection
4.4.2. This is piratically how to take a snap shot of EM. Since EM follows the scheme in
Damgaard and Dupont [21], it can be guaranteed that the attacker will not learn more
than the data currently on the disk. In addition only users which are logged into the
system will be effected. If a user is not logged in, hence has not typed its password, there
is no way to derive the user’s specific encryption key. This will secure other user in the
system on a breach.

In the right side of Figure 5.26 the offline storage attack are illustrated. In Security Level
2 it was possible to decrypt the system, if an attacker somehow could get the single master
key used for the disk encryption.

Because ACRYLICS bind the security of the running system with the security of the offline
storage, it is not possible to decrypt the disk, without ”being” the user. An attacker will
need both the boot-password and a user’s password. Furthermore all the capabilities
are needed to decrypt each file, so the attacker needs the capability list for the user to
compromise. So to compromise one user an attacker will need the boot-password (or
the key derived from the password), the user’s password (or the key derived from the
password) and the user’s capability table. The attack basically has to know the same
amount of information as the user, hence the attacker is ”being” the user. If additional
users should be attacked, the attacker needs the user password (or the key derived from
the password) from each user.

As stated with privileged escalation there is no single super-user which can access it all,
hence there is no privileged escalation which makes it possible to read the entire disk
without ”being” all the users in an offline attack.

Since attacks for both the running and the offline system comes down to the fact that an
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attacker needs to ”be” a user on the system, and then it is only the particular user which
is compromised, ACRYLICS is claimed to be hard to attack from the outside.

It is of course very important for the security not to compromise with key derivation
functions, random number generation, etc. We saw in Security Level 2, that the LUKS
key Management [11] was constructed in a way, which reduced the possible key range
significantly, and that would of course also weakness ACRYLICS if this is the case.

Security Level 3 marks the state of the current reference implementation. Security Level
4 includes the improvements for CAPM. As it is now claimed that ACRYLICS is hard
to attack from the outside, we can turn our heads to the inside. The improvements in
Section 5.6 concerns about malicious users in the system. As just discussed an attacker
has to play the role as a user, and there ACRYLICS has to defend also againt malicious
users. The challenges pointed out in Section 5.6 is of course a way to attack the system
here in Security Level 3, but will improve ACRYLICS security to Security Level 4.

5.7.2 Security Level 4 - ACRYLICS with Improved CAPM

Security Level
Level 4: ACRYLICS
With improved capability module
Level 3: ACRYLICS
Level 2: Full Disk Encryption
Level 1: No Disk Encryption

Figure 5.27: Security Level 4

Security Level 4 is the best Security Level. In Se-
curity Level 3 ACRYLICS is claimed to be hard to
attack from the outside and Security Level 4 aims
to defend against insides attacks. As mentioned
several times it is impossible to completely defend
againt malicious users, as also said in Damgaard and
Dupont [21]. However, some challenges with the
CAPM scheme was improved in Section 5.6.

Before the improvements, an malicious user, possi-
bly an attacker would be able to access all shared files in the system. Even shared files
not concerning the user. This is a security concern, and fortunately the shared secret
improvement prevented this and a user can only access its own files and files shared with
the user.

We have to note that a malicious user, possibly an attacker, can access files shared with
the malicious user. As the files are shared with the user, the user will of course have access
to the files. It is not possible to detect if a user is malicious or not, and if it was, we could
as well just block the user completely from the system.

A classic example of a malicious user is when a employee is dismissed. Sometime this
does not end well and the former employee wants to do harm. In such a case it is very
important that the employees account is revoked completely. This is ensured with the seal
improvement, which ensures that a revoked user can no longer decrypt shared data.

Of course the user account should be removed completely from the system, but it is of
importance that a revocation to shared files can happen immediately and that it can be
theoretical ensured.

It was also discussed in Section 5.6 that it might be possible secure even further for inside
attack with the use of a secret KEYCAPM which could reside in a TPM or remote access
control server. It would even be possible to also secure the system by using a secret stored
key as the encrypting key normally derived form boot-password.

It is important to underline that the discussed challenges only is a problem if a user on
the system is malicious, and the only thing other than the user’s own files it can access,
is files explicit shared with the user. It would most likely also require physical access
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to the offline storage, as all programs also should be executed with the principle of least
privileged.

VM FDE Bypass Attack vs. ACRYLICS
As the last thing we should discuss ACRYLICS in the worst case environment, recall the
VM FDE bypass attack in Security Level 2, Subsection 4.4.2. We saw how multiple full
disk encryption systems was completely bypassed.

ACRYLICS cannot either defend against this attack completely, but will not be completely
bypassed right away. As guest host we have to assume that the host can read the value of
our complete memory space at all time, hence the state of EM, hence the host does not
need to know boot-password. But before the host can read any actual data on the disk a
user needs to be logged in. When a user logs in the users encryption keys has to be stored
somewhere in memory, and we need to assumed the the host also can read this. When a
user is logged into ACRYLICS the hash table with capabilities is built. The host needs
this table and the capabilities for each directory and file the host wants to access. We also
have to assume the host can read this from memory.

It is now possible for the host system to access all the content that the user can access, it
has the knowledge of EM’s state, the user’s encryption and the user’s capability list.

But still is ACRYLICS not entirely broken, because the host cannot access any other data
on the disk, so a user is first compromised when it is logged in and the user’s encryption
key is derived.

Over time we have to assume that any user has been active at some point, and in this
case ACRYLICS is completely breached. But remember it is the case where the kernel
memory can be observed constantly, and the host can extract any information it wants
by inspection. Also two things should be noted. Firstly, no single super-user can access
all data, hence every single user has to be compromised. Secondly, if the shared secret
improvement was not made, then it would be possible for the host to read EM’s state
and use it to decrypt any shared file across the file system, but the improvement defend
against this.
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6 Implementation
In this section we will discuss some implementation specific details. In Section 6.1 the
limitation of the implementation is discussed. In Section 6.2 the overall structs of the
code is introduced, and how it is compiled. In Section 6.3 the specific and hardcoded
choices are discussed. In Section 6.4 some of the important structs from the source code
are introduced to give a better understating when examples of the running system are
discussed in Chapter 7.

6.1 Limitations
The implementation of the complete ACRYLICS system is a huge task, which is why it
has been necessary to make some limitations.

The development of ACRYLICS has been done on a Linux system, where a normal user
program in Linux is used to simulate what ACRYLICS do. The execution environment is
not finally designed and would require an entire capable operating system to run correctly.
However simulation implementation shows how the boot process should work, how users
are stored and the basic functionality of the system works. Since the prime focus in this
thesis is to bind the security between operating system and file system this is the most
important thing, and this is what the simulator program shows. In fact the simulator
program can be seen as how ACRYLICS is mounted to a third party operating system,
and still enforces the third party system to follow the specific design.

Only Symmetric Encryption
Since the implementation is completely free of library dependencies, an asymmetric key
scheme has not been included. This means that the current implementation uses AES in
all places where encryption is needed. Including where it should have been the asymmetric
key pair that should have been used, recall the Hash-Key-Tree’s Root node in Section 5.4.
This limitation had to be accepted in order to reach an implementation state which shows
the core values. The implementation is ready to store asymmetric keys in the correct
places, and it is ”only” an implementation of the asymmetric scheme itself that is missing.

Hash-Key-Tree’s hashes are fixed
Hash values of sectors has been fixed, such that encrypted sectors have the hash value
0xcaca -caca-caca-caca-caca-caca-caca-caca and plain text sectors have the
hash values 0xaaaa -aaaa-aaaa-aaaa-aaaa-aaaa-aaaa-aaaa. The primary reason
is because of debugging the system. It is hard to debug a cryptographic system since all
encrypted bytes just appear random. If just a simple mistake is made, a decryption can also
result in something that looks like random data. To easier spot out the hash values, these
were hardcoded. Code for constructing the real MAC (Message-Authentication-Code) is
also missing, and the implementation is still in this state.

Key Derivation Function
In the current implementation the key derivation function is just a simple hash of the
password, and must never be done like that in a production system. A real key derivation
function is needed; a cryptographic secure hash function. However, it is “just” a matter
of updating the logic in the key derivation function in the source code.
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Free Sector Allocation
The ACRYLIC File System does not have implemented a proper free sector allocation
scheme, and the current proof of concept allocator will only work for demonstrating pur-
poses.

Hash-Key-Tree Leave Nodes Not Encrypted
The root of the Hash-Key-Tree is encrypted, although with the symmetric encryption as
mentioned, but it supports the right boot process according to the ACRYLICS design.
But leaf nodes are not encrypted as they should. Logical data sectors are encrypted with
a key from the leaves, and the key is stored correctly, along with the hardcoded hash and
the real Initialization Vector for the encryption. So the functionality works, but is not
recursive to the root node. This means that the recursive encryption of the Hash-Key-Tree
is not truly implemented, however, the leaf layer works as described in the design section
and the root node is decrypted and checked on boot.

6.2 ACRYLICS Reference Implementation in Linux
The current implementation is running on Linux as a normal user program and is simulat-
ing ASCYLICS. A large normal file is functioning as the file system. When the program
loads, it starts simulating ACRYLICS and is reading the file as the disk.

The source code is structured as follow

• complete_test_system.c: Contain user interaction and control the text user in-
terface, hence is the User Module. This has code which is Linux specific. ACRYLICS
integrated in an operating system should integrate with the User Interface from the
operating system itself.

• Acrylic_File_System: Directory containing multiple source files which is the
implementation of the entire ACRYLIC File System. Platform independent code,
programmed in C with no dependencies.

• Capability_Module: Directory containing source code files for the Capability
Module. Platform independent code, programmed in C with no dependencies.

• Disk_Encryption_Module: Directory containing source files for Encryption
Module. Platform independent code, programmed in C with no dependencies.

• Disk_Operations_Module: Directory containing source code for disk operation.
This is a platform dependent module and the code will be different depending on
how a specific system or architecture writes to the disk. In Linux the code integrates
with standard file I/O. In a barebone system, this module should contain code to
talk with the physical disk.

• Encryption_Interface Directory containing the source code for an Encrypting
Interface. As encryption functions can be used multiple places in an operating
system, this is separated from the rest of the code and is made as an interface, so
the interface both defines how to call cryptographic functions and contains the code
itself.

This means that the code for the AES encryption used in the system is implemented
here. The current AES implementation used is a modified version of https://
github.com/kokke/tiny-AES-c.This implementation is in the public domain
and free to use. The modification made to the code has primarily been to dynamically
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allow different key-sizes, and the interface to calling the function has also been
modified to contain information on key sizes.

The AES implementation is NOT time-attack-safe, which means that it should never
be used in production systems as is.

The Encryption Interface only has one dependency, a platform dependency in term
of the encryption_interface_get_random_bytes-function. Right now this
is hardcoded to Linux rand() function, which is not cryptographic safe to use. The
random function is seen as a platform dependency, since that platform, hence the
Operating System has to offer a facility to get random bytes. This could for example
be from the TPM (discussed in Section 4.1) or from the CPU itself. Intel for example
has the RDRAND instruction. However, the choice of source to random bits must
be done very carefully, since it must be really random and safe to use, to keep the
system secure. There have been rumors that Intel’s RDRAND contains possible
backdoors [73].

• Common and others: In the common and in the source code root directory, there
are some additional files containing commonly used code and some struct definitions
which were necessary for simulating some kernel structures.

The hash-table and the hash-functions in the common folder is code reused from the
author’s bachelor thesis [37].

In the code directory a bash file with name build_for_linux.sh is used to compile
the system. The system should compile on most Linux systems and is compiled with the
command

1 bash build_for_linux.sh

This will create the executable which is the complete simulation program. The file is called
acrylics.

The program is executed with one parameter, which is the name of the file which simulates
the disk.

1 ./acrylics disk_file.img

If the file does not exist, it will be created and be formatted with the ACRYLIC File
System.

As ACRYLICS is meant to be freestanding and integratable in a barebone operating
system, it is designed to have no external dependencies. However, it uses some Linux
specific calls as described. But the specific code has been properly separated such that it
can be replaced and be target to compile against barebone platforms.

6.3 Implementation Specific Choices
AES is the only encryption scheme in the implementation and only the CBC mode of
operation is used with a key size of 128 bits. So any encryption in the system use this. It
is however also possible for a user to be non-encrypted.
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The disk size is also fixed to contain 4096 physical blocks which are fixed at the size of
4096 bytes each. This gives a disk size of around 16MB. The logical sectors are fixed to a
size of 8192 bytes each.

This will give a Hash-Key-Tree of height 1. Note that the Hash-Key-Tree of height 1 would
support 4096 logical sectors (64 leaves with 64 entries), but with the fixed conditions there
will only be a little less than 2048 logical sectors. The current implementation is not
optimized and will build the complete leaf-layer, but only half of them will be used.

A system root user will always be hardcoded when starting a new disk. The username is
System_Root_User and has the password sysadmin. The boot-password is also fixed
to sysadmin.

6.4 Important Structures
In this section some of the most important structures from the source code are introduced.
This will give a better understanding when examining the running system in Chapter 7
and give a good impression on how the theory is implemented in the code.

6.4.1 Encryption_Disk_Information
The Encryption_Disk_Information is the EMh described Section 5.4. It has an
encrypted and unencrypted part. So the main struct Encryption_Disk_Information
contains the unencrypted part seen in Listing 6.2 and the encrypted part Listing 6.3.

1 typedef struct Encryption_Disk_Information
2 {
3 Encryption_Disk_Information_Unencrypted_Part unencrypted_part;
4 Encryption_Disk_Information_Encrypted_Part encrypted_part;
5 } __attribute__((packed)) Encryption_Disk_Information;

Listing 6.1: Encryption_Disk_Information
Unencrypted Part
This is all the values needed for EM to know how to decrypt the second part and which
location the system has on the disk. The structs size is 130 bytes, which we use to validate
the functionality when examining the running system in Chapter 7.

1 typedef struct Encryption_Disk_Information_Unencrypted_Part
2 {
3 uint64_t EM_version;
4 uint8_t em_header_iv[32];
5 uint8_t em_header_mac[16];
6 uint64_t LBA_em_this_info_end;
7 uint64_t LBA_first_logical_sector;
8 uint64_t LBA_last_logical_sector;
9 uint64_t last_logical_index;

10 uint64_t partition_LBA_start_sector;
11 uint64_t partition_LBA_last_sector;
12 uint64_t partition_pysical_sector_size;
13 uint64_t partition_logical_sector_size;
14 uint16_t symmetric_encryption_type;
15 uint16_t symmetric_encryption_algorithm;
16 uint16_t symmetric_encryption_mode_of_operation;
17 uint32_t symmetric_encryption_key_size;
18 } __attribute__((packed)) Encryption_Disk_Information_Unencrypted_Part;

Listing 6.2: Encryption_Disk_Information_Unencrypted_Part
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Encrypted Part

The encrypted part holds information about EM. Does it have a cache system, does it have
a journaling system etc. It also holds the important information of where is the start and
end of the Hash-Key-Tree and more. The private and public key are also stored here, which
is used to validate the root node of the Hash-Key-Tree. The hash for the root node is in the
last part of the encrypted part with the encryption keys. As the encryption keys can vary in
size, the asymmetric_keys_private_public is just a pointer to the end where multi-
ple things happen. For instance the Encryption_Module_Hash_Root_node_sector
-struct which holds the root node MAC. Struct is seen in Listing 6.4

1 typedef struct Encryption_Disk_Information_Encrypted_Part
2 {
3 uint64_t LBA_hash_tree_start;
4 uint64_t LBA_hash_tree_end;
5 uint64_t LBA_em_cache_start;
6 uint64_t LBA_em_cache_end;
7 uint64_t LBA_em_journaling_start;
8 uint64_t LBA_em_journaling_end;
9 uint64_t em_total_number_nodes;

10 uint64_t em_tree_depth;
11 uint64_t em_records_pr_sector;
12 uint16_t asymmetric_encryption_type;
13 uint16_t asymmetric_encryption_algorithm;
14 int64_t privat_key_size;
15 int64_t public_key_size;
16 uint8_t padding[19];
17 // asymmetric_keys_private_public has to be at the end, since we allocate

extra memory at the end for the keys.
18 uint8_t asymmetric_keys_private_public;
19 } __attribute__((packed)) Encryption_Disk_Information_Encrypted_Part;

Listing 6.3: Encryption_Disk_Information_Encrypted_Part

1 typedef struct Encryption_Module_Hash_Root_node_sector
2 {
3 uint8_t root_node_iv[32]; // TODO(Jørn) Should be removed when real

asymmetric encryption is used.
4 uint8_t root_node_MAC[64];
5

6 } __attribute__((packed)) Encryption_Module_Hash_Root_node_sector;

Listing 6.4: Encryption_Module_Hash_Root_node_sector

6.4.2 Hash-Key-Tree Node

As described in Section 5.4 a Hash-Key-Tree node contains 64 entries to childrens. An
entry contains the random encryption key, MAC and IV for a child. In the code the struct
is called Disk_Encryption_Module_Expansion_Record and is seen in Listing 6.5.

1 typedef struct Disk_Encryption_Module_Expansion_Record
2 {
3 uint8_t random_encryption_key[32]; // Max 256 bit key size.
4 uint8_t record_mac[DISK_ENCRYPTION_MODULE_MAC_RECORD_SIZE];
5 Encryption_Interface_AES_Initialization_Vector initial_vector;
6 } __attribute__((packed)) Disk_Encryption_Module_Expansion_Record;

Listing 6.5: Disk_Encryption_Module_Expansion_Record
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6.4.3 User Master Table
To give an impression of the users, we will take a look at the User Master Table introduced
in Section 5.3.

The table itself is hardcoded to the size of a logical sector. The essential is that it contains
the Master_User_Table_Entry as also introduced in Section 5.3, and is seen in Listing
6.6.

1 typedef struct Master_User_Table
2 {
3 Master_User_Table_Entry entry[HARDCODED_NUMBER_ENTRIES_MASTER_USER_TABLE];
4

5 } __attribute__((packed)) Master_User_Table;

Listing 6.6: Master_User_Table

The entries contains the username and a hash of the password, which are validated when
the user attempts to log in to the system. The entry struct is shown in Listing 6.7, note
which are the user’s specific settings Master_User_Table_Entry_Options.

1 typedef struct Master_User_Table_Entry
2 {
3 Master_User_Table_Entry_Options options;
4 uint8_t username[DEFAULT_MAX_USERNAME_LENGTH];
5 uint8_t password[128];
6 } __attribute__((packed)) Master_User_Table_Entry;

Listing 6.7: Master_User_Table_Entry

If the credentials are validated the user can have its own encryption settings as described
in the design and the struct is shown in Listing 6.8. EM has to know the encryption
settings, and they are also stored as a part of the entry.

1 typedef struct Master_User_Table_Entry_Options
2 {
3 uint32_t user_id;
4 uint8_t is_extended;
5 uint32_t password_size_bytes;
6 Acrylic_Sector_Offset user_master_information_table;
7 uint8_t integrity_user_master_information_table[32];
8 uint8_t not_used[15];
9 } __attribute__((packed)) Master_User_Table_Entry_Options;

Listing 6.8: Master_User_Table_Entry_Options

6.4.4 Directory Table
To give an impression of the directory structures of the ACRYLIC File System, we will see
the Directory Table (DT) in Listing 6.9 and the Directory Table Entries (DTE) in Listing
6.10. The structures functions as described in Section 5.3.

1 typedef struct Acrylic_Directory_Table
2 {
3 Acrylic_Directory_Table_Entry entries[DEFAULT_TABLE_SIZE];
4 } __attribute__((packed)) Acrylic_Directory_Table;

Listing 6.9: Acrylic_Directory_Table
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1 typedef struct Acrylic_Directory_Table_Entry
2 {
3 Acrylic_Object_ID file_id;
4 char object_name[256];
5 uint16_t entry_object_kind;
6 uint8_t unused_old_cap_block[42];
7 uint8_t integrigy_table_entry_object_index[32];
8 Acrylic_Sector_Offset table_entry_object_index;
9 uint8_t unused[164];

10 } __attribute__((packed)) Acrylic_Directory_Table_Entry;

Listing 6.10: Acrylic_Directory_Table_Entry

6.4.5 Acrylics Object
The Acrylics Object (A-OBJ) was also introduced in Section 5.3. A-OBJ are the file meta
data and hold a lot of information.

Interesting is the Acrylic_Capability_Object_Block which are the sensitive CAP-
OBJ which has been described multiple times. If a file is shared, this is the exact struct
that the users will point to. Each user will have their own CAP which are validated against
the CAP-OBJ stores in Acrylic_Capability_Object_Block.

The implementation of the capability structures is very one-to-one with the introduced
structures in Section 5.2.

1 typedef struct Acrylic_Object
2 {
3 Acrylic_Object_ID object_id;
4 Acrylic_Sector_Offset table_backpointer;
5 Acrylic_Sector_Offset table_entry_index;
6 Acrylic_Sector_Offset this_secor_index;
7 uint64_t owner_id;
8 uint64_t size;
9 Acrylic_Timestamp creation_date;

10 Acrylic_Timestamp access_time;
11 Acrylic_Timestamp modification_time;
12 Acrylic_Capability_Object_Block capability_object_block;
13 uint8_t unused[58];
14 Acrylic_Data_Extent data_pointer[800];
15 } __attribute__((packed)) Acrylic_Object;

Listing 6.11: Acrylic_Object
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7 Proof of Concept
In this section we will walk through some concrete examples of the running ACRYLICS
reference implementation(ARI). The reference system was run as a program on Linux.
Recall from Chapter 6 that the reference implementation is built in modules, the most
of the modules is architecture independent, and can be compiled to any target. Besides
the specific implemented UM for Linux, the only modules which are architecture specific
are EM and DM. These have been specifically implemented to run on Linux, and it is
therefore possible to run on Linux.

Running ACRYLICS In a Third Party Operating System
However it should be noted that ACRYLICS cannot guarantee security when running
inside another system, recall the VM FED bypass attack discussion in Subsection 5.7.2.
This also underlines the fact that ACRYLICS has to run baremetal in the operating system
to ensure security, and the whole execution environment should also support and enforce
the CAPM interface.

If programs were to be executed from ACRYLICS running in Linux, ACRYLICS has no
way to tell Linux which capabilities a program has and Linux wouldn’t know how to handle
the capabilities and ensure the CAPM scheme is followed.

However, it is possible to test ACRYLICS as a mounted system, where the file system can
be traversed with correct credentials, and can be modified if the schemes in ACRYLICS
are followed strictly. This is actually a test case of the “offline storage”-security which
was emphasized in the Security Level model. So this emphasizes that even if ACRYLICS
is mounted to some third party operating system (in this case Linux), the third party
operating system has to follow the schemes and the schemes cannot be circumvented,
because of the encryption scheme.

Performance Test Considerations
Because of the implementation limitations described in Section 6.1, performance tests of
the system will not be informative at this point. Capability-based systems have often
been considered to have poor performance. However, modern hardware is extremely fast,
and with better and better support for encryption in hardware, the encryption itself also
becomes faster and faster. ACRYLICS is believed to not include significantly more en-
cryption than other Full Disk Encryption solutions, and it is believed that it should be
possible to achieve the same performance as existing solutions. As an example one could
look at the performance comparison in CryFS [45].

In file systems free sector allocation is also a significant factor on performance as shortly
discussed with ZFS in Subsection 4.3.2. Because ACRYLICS only have a proof-of-concept
free sector allocation, this would also highly influence any performance measure and give
inaccurate results.
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7.1 Disk Formatting and System Setup
Before ACRYLICS can be used, it has to be initialized. ARI takes a file path as argument,
where the file simulates the physical disk. If the file specified in the program arguments
does not exist, ARI will create a file and initialize ACRYLICS in the file. If the file exists,
ARI will boot with the information in the file.

In the initialization phase ACRYLICS needs a boot password. In ARI this has been hard-
corded to ”sysadmin” which is also the password for the System_Root-user. When the
boot password has been supplied the ACRYLICS system is set up. however, ACRYLICS
require at least one user, such that it is possible to operate on the system and this user
is hardcoded to be the System_Root-user with password ”sysadmin”. In a real scenario
the operating system should prompt for this information. Some other information is hard-
coded in ARI, like disk size, partition size and other details which are very important to
ACRYLICS. Recall the EMh described Section 5.4.

Remember that the first part of EMh is unencrypted, since the data is needed to boot
ACRYLICS and the second part is encrypted by the boot-password. Also recall that in
ARI EMh is the Encryption_Disk_Information-struct as described in Subsection
6.4.1.

EM’s Header Information
From the binary dump of the first part of the disk, it is possible to inspect and verify
that the encrypted data starts at offset 0x00000082. The unencrypted part is 130 bytes
as described in Subsection 6.4.1, and by inspection of the data in the unencrypted part,
it can be verified that the system behave as expected. The second part is encrypted, and
can only be verified if the boot-password is entered and ARI is inspected in a debugger.

1 00000000: e803 0000 0000 0000 05d8 36c5 b0e3 9199 ..........6.....
2 00000010: 4ff3 a74c 5fc0 c261 0000 0000 0000 0000 O..L_..a........
3 00000020: 0000 0000 0000 0000 caca caca caca caca ................
4 00000030: caca caca caca caca 0100 0000 0000 0000 ................
5 00000040: 4400 0000 0000 0000 4400 0000 0000 0000 D.......D.......
6 00000050: de07 0000 0000 0000 0000 0000 0000 0000 ................
7 00000060: ff0f 0000 0000 0000 0010 0000 0000 0000 ................
8 00000070: 0020 0000 0000 0000 0200 0100 0200 8000 . ..............
9 00000080: 0000 b33a 28cd e830 0aef b2fa f0c7 18ba ...:(..0........

10 00000090: a56a 5b37 3d63 ca8f 3264 c08d b099 1e2a .j[7=c..2d.....*
11 000000a0: 64dc c504 4c62 93e5 0d97 98ca 2fe4 151b d...Lb....../...
12 000000b0: 4002 d802 6be0 ed98 7588 b942 aec3 d88c @...k...u..B....
13 000000c0: ff3f efc6 4dc2 e99b c27c 2690 eb01 517c .?..M....|&...Q|
14 000000d0: 34bd 2834 fb6e 6e6b 7697 a592 3b82 839e 4.(4.nnkv...;...
15 000000e0: cab1 8708 88e5 e1c4 9dea 0922 7a33 e9c1 ..........."z3..
16 000000f0: 6d72 9f4e a652 0a69 488b 1b94 fce2 015d mr.N.R.iH......]
17 00000100: 1fd3 f0b4 dac8 2fe5 4415 399d e80f 0d40 ....../.D.9....@

Hash-Key-Tree
In the setup process the Hash-Key-Tree is created and its size is calculated. With ARI’s
hardcoded settings the tree should start at LBA 2. ARI’s settings are the same as il-
lustrated in Figure 5.13, though only with 4096 physical sectors in total size, but the
Hash-Key-Tree is structured the same way.

If we observe the partial binary dump, LBA 2 starting at offset 0x2000 to 0x2FFFF looks
like random data and we assume that it is encrypted, like we expect the root node of the
tree should be.
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A couple of the implementation limitations can also be observed. The LBA 3 starting at
0x3000 is the first leafs of the Hash-Key-Tree, recall that the leafs in the implementation
are not encrypted correctly. However, this makes it possible to see what is in the leaves.
Remember the hash values for encrypted sectors is hardcoded with 0xca’s, which we can
verify in the binary dump. The other things in the record is the random encryption key
and the IV used for the encryption for the correspondent sector. As also noted before, in
the finished system, this will be encrypted such that it does not leaks any information.

1 00002fa0: 0f8a 1244 75e3 c56e b3d0 a46a 1c8f e5c3 ...Du..n...j....
2 00002fb0: 204d 5761 38e6 48eb 99bc 9dfc 03a3 61ba MWa8.H.......a.
3 00002fc0: 231c 803b 8d06 c749 5e7f 6b9b b173 1561 #..;...I^.k..s.a
4 00002fd0: 92de 7916 1e44 8cfa 8d29 41e4 8d2b f8c5 ..y..D...)A..+..
5 00002fe0: ed62 1836 3f0e 8694 04b6 8678 4f27 8fa3 .b.6?......xO'..
6 00002ff0: 28b0 0767 9d76 900d e748 7f77 5840 ffc6 (..g.v...H.wX@..
7 00003000: 0000 0000 0000 0000 0300 0000 0000 0000 ................
8 00003010: 0000 0000 0000 0000 0000 0000 0000 0000 ................
9 00003020: 1800 0000 0000 0030 001b c39a be70 2c67 .......0.....p,g

10 00003030: 0000 0000 0000 0000 ac53 c86d 3d7f 0000 .........S.m=...
11 00003040: caca caca caca caca caca caca caca caca ................
12 00003050: 2d4b 2a54 32ef eb56 0f4a 973e 7d86 b6b1 -K*T2..V.J.>}...
13 00003060: caca caca caca caca 001b c39a be70 2c67 .............p,g
14 00003070: d05c f99d fc7f 0000 b7c0 ccb8 5b55 0000 .\..........[U..
15 00003080: caca caca caca caca caca caca caca caca ................
16 00003090: e3f0 131e bb46 f30f 3a8d c6a0 8a13 6f61 .....F..:.....oa

ARI also writes to the last sector on the virtual disk, such that the file gets the right size.
This forces Linux to allocate the whole size of the file. It also enables us to validate the
last record used in the Hash-Key-Tree and we should be able to find the last record in the
binary dump and validate. Since the simulated disk is only 4096 physical sectors, the last
logical sector will be LSI 2014, remember that the size of the Hash-Key-Tree and EM’s
header data should be subtracted from the total disk size, before calculating the number of
logical sectors. The last record should be at location offset 0x000227a0, which is validated
in the binary dump shown in red.

1 00022770: 0000 0000 0000 0000 0000 0000 0000 0000 ................
2 00022780: 0000 0000 0000 0000 0000 0000 0000 0000 ................
3 00022790: 0000 0000 0000 0000 0000 0000 0000 0000 ................
4 000227a0: 6b00 0000 7b6b df00 0f02 0000 0000 0000 k...{k..........
5 000227b0: 3020 0000 0000 0000 8000 0000 0000 0000 0 ..............
6 000227c0: caca caca caca caca caca caca caca caca ................
7 000227d0: dba1 c677 60e5 050d a23e 357f 6951 9f6e ...w`....>5.iQ.n
8 000227e0: 0000 0000 0000 0000 0000 0000 0000 0000 ................

Start of Encrypted Data After Hash-Key-Tree
Note that the size of the Hash-Key-Tree is not optimized, hence it will always allocate all
leaves for a layer, even though the last nodes will never be used. This also means that we
should find the first LSI and the start of the ACRYLIC File System at LBA 68, which is
confirmed here, marked in red, the first logical sector starts at offset 0x00044000.

1 00043fa0: 0000 0000 0000 0000 0000 0000 0000 0000 ................
2 00043fb0: 0000 0000 0000 0000 0000 0000 0000 0000 ................
3 00043fc0: 0000 0000 0000 0000 0000 0000 0000 0000 ................
4 00043fd0: 0000 0000 0000 0000 0000 0000 0000 0000 ................
5 00043fe0: 0000 0000 0000 0000 0000 0000 0000 0000 ................
6 00043ff0: 0000 0000 0000 0000 0000 0000 0000 0000 ................
7 00044000: e971 9a8f 6cd8 33d5 fd95 7020 116a 9f44 .q..l.3...p .j.D
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8 00044010: a21e 48fc 3ae7 0f61 1b61 2962 6020 3876 ..H.:..a.a)b` 8v
9 00044020: bf54 2058 9267 44b5 a5d6 e9be 05a6 f5c2 .T X.gD.........

10 00044030: ab0a 90eb a69a 785d e026 1109 ee23 5557 ......x].&...#UW
11 00044040: e332 5084 32f7 6ab1 7cae 8045 693c 3994 .2P.2.j.|..Ei<9.
12 00044050: 3cda 316b e951 9408 7fef b766 0a06 8e8a <.1k.Q.....f....

7.2 Boot Sequence and User Login
The boot-password and System_Root-user’s credentials are loaded automatically and
the system will boot as the System_Root-user. Recall the fixed password described in
Section 6.3.

When the system is running, it is possible to change to another user with the change
command in ARI. In the final system, the system should prompt for the boot-password
and user login credentials. The system uses the boot-password to decrypt EM’s encrypted
header data and starts the encryption flow described in Section 5.5.

7.3 Object Creation and Sharing
We will now take a closer look at how ARI is working, and how capabilities are used. The
examples in this section will use red to highlight important details and blue to highlight
user input, which was entered into the system when the test was run.

User Creation
As the system only starts with the System_Root-user, the System_Root will start by
creating a new user with user name worker and password 1234. This is done with the
create-command and option 1. When the user has been successfully created the user
list is printed, and we can see that there are two users in the system. Recall that the users
are tightly bound to the ACRYLIC File System, and the new user information is stored
at file system level and not just in a file in the operating system. The user information is
encrypted with the settings of the encryption module.

Recall how the Master User Table is implemented described in Subsection 6.4.3. A free
spot in MUT is found and the user credentials are stored. The selected encryption settings
are also stored, such that the system can restore the encryption settings the next time the
user logs in.

1 [SYSTEM] Print user list:
2 [0]: System_Root
3 [Acrylics](System_Root) : create
4 What do you want to create:
5 1: New User
6 2: New file
7 1
8 [SYSTEM] Create new user:
9 [SYSTEM] Enter user name: worker

10 [SYSTEM] Enter user password: 1234
11 [SYSTEM] Select personal encryption preferences:
12 1: AES-CBC-128
13 2: NO-Encryption
14 3: cancel
15 Enter: 2
16 [SUCCESS] User is created
17 [Acrylics](System_Root) : list
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18 What do you want to list:
19 1: User list
20 2: Active users capabilities
21 3: Active users root directory
22 4: Malicious list directory
23 1
24 [SYSTEM] Print user list:
25 [0]: System_Root
26 [1]: worker

Note that the new user is created with no encryption. This will not affect the security of
the stored user credentials nor the other users data, it will only affect the specific user’s
files. The rest of the section shows why.

Change Active User
First we need to change to the new user, this is possible with the change command. It
will prompt for user credentials, and if the user credentials entered is found in Master User
Table, the system will load the settings for that user, and this user will now be the active
user.

1 [Acrylics](System_Root) : change
2 [SYSTEM] Enter username: worker
3 [SYSTEM] Enter user password: 1234
4 Password compare
5 00000000000070b17cde
6 00000000000070b17cde
7 [SUCCESS] Access granted
8 [Acrylics](worker) :

File Creation
Lets consider the worker-user is creating some files. This is done with the create
command. worker selects option 2 to create a file and enters the name of the file.

The system is now creating the file, generating the capability and gives back the owner
capability, which is assigned to worker.

In this example worker is creating two files /non-secret -file.txt and /another
-file.txt.

1 [Acrylics](worker) : create
2 What do you want to create:
3 1: New User
4 2: New file
5 2
6 [SYSTEM] Enter file name: /non-secret-file.txt
7 [FILE SYSTEM] Index found for file: 0
8 [SYSTEM] File: /non-secret-file.txt is created
9 [Acrylics](worker) : create

10 What do you want to create:
11 1: New User
12 2: New file
13 2
14 [SYSTEM] Enter file name: /another-file.txt
15 [FILE SYSTEM] Index found for file: 1
16 [SYSTEM] File: /another-file.txt is created
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Recall that worker was created with non-encryption settings, this means that the user’s
files are not encrypted by default. An unencrypted user could be useful in a system which
should obtain very high performance, and the information is not sensitive in any way.
However, it should be noted that almost the tiniest information leakage can potentially
give an attacker enough information to create some attack in the real world.

However, this non-encryption feature is also very good for debug purposes, because it gives
us a unique insight into the system.

If we now examine worker’s root directory, we can see the two entries for the two files
that worker created. Since the default settings for worker was non-encryption, the root
directory is just stored in plain text. For a user with encryption enabled, we would of
course only be able to see an encrypted sector. Note the gray color in the example which
is an encrypted sector just before the plain text sector.

1 00053f80: eb9b e5ff ad10 b91e 3618 8370 39ab c904 ........6..p9...
2 00053f90: c9a0 1de2 bab4 2e66 6bd4 c625 b0a0 fe13 .......fk..%....
3 00053fa0: b7fb feb5 0ea5 bab1 23eb c4e5 3f95 c285 ........#...?...
4 00053fb0: 27ee 241d b7e1 363e 558f 48f5 ec4f ca27 '.$...6>U.H..O.'
5 00053fc0: 4ac7 c865 a998 347a 8d12 258a d36b ee20 J..e..4z..%..k.
6 00053fd0: a555 f867 1a38 727b c185 96a2 3a1f dd35 .U.g.8r{....:..5
7 00053fe0: 771e fc8b 6b31 4c12 c7ac 99a9 3677 31ff w...k1L.....6w1.
8 00053ff0: 6059 d8e5 2b4c 043f e6f2 a708 0e41 34e9 `Y..+L.?.....A4.
9 00054000: 41fe baa3 80ff 4dbb 6e6f 6e2d 7365 6372 A.....M.non-secr

10 00054010: 6574 2d66 696c 652e 7478 7400 0000 0000 et-file.txt.....
11 00054020: 0000 0000 0000 0000 0000 0000 0000 0000 ................
12 00054030: 0000 0000 0000 0000 0000 0000 0000 0000 ................
13 ......... .... .... .... .... .... .... .... .... ................
14 000541e0: 0000 0000 0000 0000 0000 0000 0000 0000 ................
15 000541f0: 0000 0000 0000 0000 0000 0000 0000 0000 ................
16 00054200: 88ba 0be4 b049 fd87 616e 6f74 6865 722d .....I..another-
17 00054210: 6669 6c65 2e74 7874 0000 0000 0000 0000 file.txt........
18 00054220: 0000 0000 0000 0000 0000 0000 0000 0000 ................

Let’s assume that worker is writing the string ”This-is-non-secret-information” to /non
-secret -file.txt.

1 [Acrylics](worker) : write
2 [SYSTEM] Enter line to write: This-is-non-secret-information
3 [SYSTEM] From file:
4 This-is-non-secret-information

If we search in the binary disk for the string ”This-is-non-secret-information”, the string
can easily be found. Since the non-encrypted user is the owner, the data is not encrypted
due to the settings

1 00057fa0: 2947 8a15 1e1b 9cad b943 2e64 1c32 210a )G.......C.d.2!.
2 00057fb0: 0436 c2ce 9184 7863 34af e19f 3434 c856 .6....xc4...44.V
3 00057fc0: 53bf 7ad7 9bc3 10fd ca2f 2ab4 e18a 32ed S.z....../*...2.
4 00057fd0: f84b 7371 452e 2ba3 1b9a b1a0 a885 e2e1 .KsqE.+.........
5 00057fe0: 25c7 f332 6b09 4dc7 8d22 6d27 77f9 25a0 %..2k.M.."m'w.%.
6 00057ff0: b9ea 980c ccc8 3aa7 87bd abed 106c 0f25 ......:......l.%
7 00058000: 88ba 0be4 b049 fd87 0000 0000 0000 0000 .....I..........
8 00058010: 0000 0000 0000 0000 0a00 0000 0000 0000 ................
9 00058020: 0000 0000 0000 0000 1f00 0000 0000 0000 ................

10 00058030: 4200 0000 0000 0000 0000 0000 f2a4 8f60 B..............`
11 00058040: 0000 0000 0000 0000 f2a4 8f60 0000 0000 ...........`....
12 00058050: 0000 0000 88ba 0be4 b049 fd87 0000 b927 .........I.....'
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13 00058060: 12c4 c4f8 af1b 1bfa 2cc8 60ae b291 1000 ........,.`.....
14 00058070: 0100 1000 0100 ff00 0000 0000 0000 0000 ................
15 00058080: 0000 0000 0000 0000 0000 0000 0000 0000 ................
16 00058090: 0000 0000 0000 0000 0000 0000 0000 0000 ................
17 000580a0: 0000 0000 0000 0000 0000 0000 0000 0000 ................
18 000580b0: 0000 0000 0000 0000 0000 0000 0000 0000 ................
19 000580c0: 401f 0000 0000 0000 0000 5468 6973 2d69 @.........This-i
20 000580d0: 732d 6e6f 6e2d 7365 6372 6574 2d69 6e66 s-non-secret-inf
21 000580e0: 6f72 6d61 7469 6f6e 0000 0000 0000 0000 ormation........
22 000580f0: 0000 0000 0000 0000 0000 0000 0000 0000 ................
23 00058100: 0000 0000 0000 0000 0000 0000 0000 0000 ................

Although worker’s data is not encrypted, the Hash-Key-Tree is still updated to preserve
integrity over the whole disk. As mentioned earlier the hash values are hardcoded. With
plain text data the hash value is 0xaa and 0xca for encrypted sectors.

If we look at the current state of the Hash-Key-Tree, we can see records for non-encrypted
sectors interleaved with records for encrypted sectors and the Hash-Key-Tree doesn’t really
care if a sector is encrypted or not.

1 000031a0: 0102 0000 b000 0000 0000 0000 0000 0000 ................
2 000031b0: caca caca caca caca caca caca caca caca ................
3 000031c0: caca caca caca caca caca caca caca caca ................
4 000031d0: cf80 c57c d35d cae8 ab7f b95d b45f 6f97 ...|.].....]._o.
5 000031e0: 3020 0000 0000 0000 8000 0000 0000 0000 0 ..............
6 000031f0: 0102 0000 b000 0000 0000 0000 0000 0000 ................
7 00003200: caca caca caca caca caca caca caca caca ................
8 00003210: e245 d23e 9523 22a0 80ea 5b25 af9d de1e .E.>.#"...[%....
9 00003220: d023 96bf fd7f 0000 e845 b302 c855 0000 .#.......E...U..

10 00003230: 1024 96bf fd7f 0000 f06e 3e03 c855 0000 .$.......n>..U..
11 00003240: aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa ................
12 00003250: 004a 12d6 0100 0000 0a00 0000 0000 0000 .J..............
13 00003260: b7b1 b0e6 e27d 2ad0 7c3c f2c8 d4b0 7e50 .....}*.|<....~P
14 00003270: 2000 0000 0000 0000 0036 e46d 129e 6915 ........6.m..i.
15 00003280: caca caca caca caca caca caca caca caca ................
16 00003290: 92e7 4879 59e1 009a dfba 3d60 ba8a 1b71 ..HyY.....=`...q
17 000032a0: 0000 0000 0000 0000 2055 12d6 e87f 0000 ........ U......
18 000032b0: 40b1 3e03 c855 0000 0063 12d6 e87f 0000 @.>..U...c......
19 000032c0: aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa ................
20 000032d0: 2000 0000 0000 0000 2055 12d6 e87f 0000 ....... U......
21 000032e0: 0000 0000 0000 0000 0000 0000 0000 0000 ................
22 000032f0: 0000 0000 0000 0000 0000 0000 0000 0000 ................
23 00003300: 0000 0000 0000 0000 0000 0000 0000 0000 ................

Remember that the Hash-Key-Tree should be encrypted in a final system, so this informa-
tion would not be possible to see in the final system and would not leak any information
whether a sector is encrypted or not, and in fact it does not either tell something about
which encrypting setting that the given sector uses.

Share File With Reduced Capability
Let’s see how capabilities are shared, in particular to share files, and how will it turn out
if System_Root shares secret data with the non-encryption worker?

Let’s assume that System_Root creates a secret file and shares it with worker.
System_Root use create and selects the file name /secret -file.txt. When the file
has been created System_Root uses the write and writes the string ”secret-information”
into the file.
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1 [Acrylics](System_Root) : create
2 What do you want to create:
3 1: New User
4 2: New file
5 2
6 [SYSTEM] Enter file name: /secret-file.txt
7 [FILE SYSTEM] Index found for file: 1
8 [SYSTEM] File: /secret-file.txt is created
9 [Acrylics](System_Root) : write

10 [SYSTEM] Enter line to write: secret-information
11 [SYSTEM] From file:
12 secret-information

We saw with worker’s data, it was possible to find the data in plaintext in the binary
disk, this is not the case now, since system_root is encrypting its files by default. If the
data’s sector location was tracked down, we would only see encrypted data.

Now system_root shares READ/WRITE capability to worker. This is done with the
share command. system_root enters file name for the file to be shared, selects with
option 3 that a READ/WRITE capability should be created. Since it is not possible to
share a capability without the credentials for the user to be shared with, the credentials
for worker has to be entered. It is a strong requirement since the user’s capability table
and root directory is encrypted with the key derived from the user’s password. The system
therefore needs the password to get the encryption key. When the system has the user’s
encryption key, the system can assign the newly created capability to the user. In this
case to worker.

1 [Acrylics](System_Root) : share
2 [SYSTEM] Enter path on file to share: /secret-file.txt
3 [SYSTEM] Which permission would you like to share:
4 1: READ
5 2: WRITE
6 3: READ/WRITE
7 Enter number: 3
8 [SYSTEM] Share file: /secret-file.txt whit permission: 3
9 [SYSTEM] Enter user credentials to share with

10 [SYSTEM] Enter username: worker
11 [SYSTEM] Enter user password: 1234
12 Password compare
13 00000000000070b17cde
14 00000000000070b17cde
15 [SUCCESS] Access granted
16 Password compare
17 ae33efe3c0be562be3e6489fa8d2e01a
18 ae33efe3c0be562be3e6489fa8d2e01a
19 Access granted
20 [FILE SYSTEM] Index found for file: 2

Note the password comparison, which compares the Capability Object’s password and the
password from the user’s capability, in this case if System_Root has access to the object.
System_Root has access, and access is granted, and it is possible to share a reduced
capability.
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We change the active user to worker and let worker lists its root directory with the
list command option 3.

1 Worker's root directory shows in plain text file name:
2 [Acrylics](worker) : list
3 What do you want to list:
4 1: User list
5 2: Active users capabilities
6 3: Active users root directory
7 4: Malicious list directory
8 3
9 [bb4dff80a3bafe41]: non-secret-file.txt

10 [87fd49b0e40bba88]: another-file.txt
11 [32c090b31fedf167]: secret-file.txt

We can now see the two files worker created earlier and the newly shared secret -
file.txt. Note that secret -file.txt has Object ID 32c090b31fedf167 which
corresponds to a capability with the same ID.

If worker uses the list command with option 2, worker’s capability list is printed.
From that capability list we can see the shared capability for secret -file.txt.

1 [32c090b31fedf167]:
2 |-----------------|--------------------------------|
3 |E-Cap: | |
4 |-----------------|--------------------------------|
5 |Capability id: | 32c090b31fedf167 |
6 |-----------------|--------------------------------|
7 |Reduction field: | ff | ff | 3 |
8 |-----------------|--------------------------------|
9 |Password: |7e89b83273c5152db56d0ece049b90c5|

10 |-----------------|--------------------------------|
11 |Class: |0 |
12 |-----------------|--------------------------------|

We should note several things here. Firstly we see that Object ID and Capability ID
match. This is just a simple mechanism which makes efficient lookups possible. In the
reduction field we see that the last (right most) sub-field’s value is 3. This should be seen
as the two least significant bits are ones. The least significant is the read bit and the
next the write bit. The other sub-fields are flat as follows from the procedure of creating
reduced capabilities.

Lastly note the capability’s password, 7e89b83273c5152db56d0ece049b90c5. The
capability object’s password is 0a3d3204a5583f8701b378cb8a32a320. Now the ca-
pability password derivation function should reach the same password as in worker’s
capability to grant access to read the file.

Read Data From File
By the read command, worker reads the /secret -file.txt-file, and as the correct
password is derived access is granted and the string in the file has been decrypted and
printed:

1 [Acrylics](worker) : read
2 [SYSTEM] Enter file to read: /secret-file.txt
3 0a3d3204a5583f8701b378cb8a32a320
4 d6f68b631ccc0ee7ae922e8d8801ebfa
5
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6 Password compare
7 d6f68b631ccc0ee7ae922e8d8801ebfa
8 d6f68b631ccc0ee7ae922e8d8801ebfa
9 Access granted

10 [FILE DATA]: secret-information

The string ”secret-information” is encrypted on the disk, and by the ACRYLICS design,
this is still encrypted, even if the file is shared with a non-encrypted user. The encryption
key is derived from the Hash-Key-Tree and EM’s encryption key.

This does not only hold in this specific case, but holds for any case. This means that any
user on the system theoretically can have their own encryption settings, but still be able
to share files with each other and the owner has a guarantee that the file is encrypted
safely with its encryption setting.

We should also look at an example of worker reduce its READ/WRITE capability, to
another user. A new user is created called worker2. worker shares a reduced capability,
like we saw before, but this time only with READ permission. If we change the active user
to worker2 and lists its capabilities, we will see the following capability.

1 [32c090b31fedf167]:
2 |-----------------|--------------------------------|
3 |E-Cap: | |
4 |-----------------|--------------------------------|
5 |Capability id: | 32c090b31fedf167 |
6 |-----------------|--------------------------------|
7 |Reduction field: | ff | 1 | 3 |
8 |-----------------|--------------------------------|
9 |Password: |d6f68b631ccc0ee7ae922e8d8801ebfa|

10 |-----------------|--------------------------------|
11 |Class: |0 |
12 |-----------------|--------------------------------|

We should note that the Capability ID is the same, since it still corresponds to the same
file with the same Object ID. This time we see that the middle sub-field has been reduced
to 1 (only the least significant bit set). When CAPM logical ANDs the sub-fields together
the result will be 1, hence READ only capability.

If we let worker2 read the /secret -file.txt-file we will see that an extra step is
taken in the derivation function, but still ends up with the correct password as in the
capability, hence access granted.

1 [Acrylics](worker2) : read
2 [SYSTEM] Enter file to read: /double-share.txt
3 ae33efe3c0be562be3e6489fa8d2e01a
4 7e89b83273c5152db56d0ece049b90c5
5 d6f68b631ccc0ee7ae922e8d8801ebfa
6
7 Password compare
8 d6f68b631ccc0ee7ae922e8d8801ebfa
9 d6f68b631ccc0ee7ae922e8d8801ebfa

10 Access granted
11 [FILE DATA]: secret-information
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Capability Validation Fails
The last example is a read request where the validation fails, hence access denied. If we
assume worker tries the capability from before on another file, the derived password will
not match the password from the capability and hence access will be denied.

worker’s Capability:
1 [32c090b31fedf167]:
2 |-----------------|--------------------------------|
3 |E-Cap: | |
4 |-----------------|--------------------------------|
5 |Capability id: | 32c090b31fedf167 |
6 |-----------------|--------------------------------|
7 |Reduction field: | ff | ff | 3 |
8 |-----------------|--------------------------------|
9 |Password: |7e89b83273c5152db56d0ece049b90c5|

10 |-----------------|--------------------------------|
11 |Class: |0 |
12 |-----------------|--------------------------------|

Read attempt on another file:
1 [Acrylics](worker) : read
2 [SYSTEM] Enter file to read: /another-file.txt
3 570e234ca18f34346bbdbae448bfddd1
4 d6f68b631ccc0ee7ae922e8d8801ebfa
5
6 Password compare
7 d6f68b631ccc0ee7ae922e8d8801ebfa
8 7e89b83273c5152db56d0ece049b90c5
9 Access denied

10 [ABORT] Failed to read object
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8 Conclusion and Future Work
8.1 Conclusion
The aim was to show if current operating systems core design makes them vulnerable, and
if better IT-security could be obtained with a new core design which also can be proven
secure.

To answer the questions relevant literature was introduced. Particularly Lopriore’s [42]
e-capabilities and Damgaard and Dupont’s [21] Disk Encryption Scheme. The knowledge
contributed to the analysis of the current systems, and the schemes were used in the core
design of ACRYLICS.

In the analysis it was shown that some types of attacks are most likely impossible to
defend against with the current core design given the use of ACL, super-user and security
features which are not enforced. This answers the first question.

To quantify the analysis and later compare the analysed systems with ACRYLICS, security
levels 1-4 were introduced. We saw that all the analysed systems without disk encryption
are at Security Level 1 and with disk encryption they are at Security Level 2. ACRYLICS
was proposed with a new core design with enforced capability-based access control and
integrated disk encryption. ACRYLICS’ security is implied by it following the proposed
schemes which are proven secure. It was shown that ACRYLICS is at Security Level
3. ACRYLICS in Security Level 4 introduced stronger security for shared files with the
shared secret improvement and defends against revoked users with the seal improvement.

ACRYLICS in the final Security Level 4 would prevent privilege escalation attacks since
there is no real super-user which can access all files. This implies security but also privacy
since no user can access another user’s private files. Programs and services should only be
granted the smallest set of capabilities, hence follow the principle of least privilege. So a
malicious program or service should have even less power than the user executing it.

With the possible addition of a secure encryption key in CAPM, for example stored in
the TPM or an external access control server, ACRYLICS might even prevent malicious
users from forging more powerful CAPs or modify CAP-OBJs, but this can come with
drawbacks and other security concerns.

A reference implementation of the core functionality in ACRYLICS was introduced. The
reference implementation shows that it is possible to implement and run ACRYLICS in
practice.

ACRYLICS presents a new core design for operating systems, it is built from schemes
proven to be secure and in the Security Level model it is argued that better security
is obtained than existing systems. ACRYLICS is the proposed solution to the second
question.

8.2 Future Work
A lot of possibilities are seen in ACRYLICS and a lot of advanced features should be
possible to implement given the design and attributes of the system. Firstly the execution
environment should be designed. It should make use of the same CAPM scheme and
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continue to contribute to the enforced security between the operating system and file
system, as has been obtained.

ACRYLICS is designed to be the core design in an Operating System, and with the final
part of the execution environment, the system would be ready to test in a barebone
operating system environment.

It should also be noted that a lot of existing capability based solutions make use of the
”pointer authentication mechanism”, which Apple also uses. This approach should be
explored, and see if it could be combined with the already existing CAPM scheme in
ACRYLICS.

ACRYLICS aims for high security and protection of users, and the fact that users in
between are safe for one another, including from the system administrator, it would be a
nice feature to integrate ”deniable data”. File systems with this attribute are known as
”deniable file systems”, and makes it possible to hide data which can not be proven to
exist. Given the design of ACRYLIC there should be a large potential to integrate this,
and ensure the deniability. Since a user is not capable of decrypting the entire disk anyway
in the current design, it is possible to hide data and claim it is an unreachable part of the
disk for the given user.

As we have seen, root-of-trust is a major concern in current systems, and the proposal
with a secure CAPM encryption key stored in the TPM or on an access control server
should be investigated. Furthermore it could be investigated if ACRYLICS could function
as a distributed file system, as the permissions should be safe cross systems. In this way a
user could log into a workstation and get its credentials validated and gets his capability
table, maybe directly from some access control server. With the capabilities it would be
possible to ask the remote file server for files, and only with the correct capabilities the
files can be retrieved.
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Hello, here is some text without a meaning. This text should show what a printed text will look like
at this place. If you read this text, you will get no information. Really? Is there no information?
Is there a difference between this text and some nonsense like “Huardest gefburn”? Kjift – not at
all! A blind text like this gives you information about the selected font, how the letters are written
and an impression of the look. This text should contain all letters of the alphabet and it should be
written in of the original language. There is no need for special content, but the length of words
should match the language.
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