
Version 1.0 Draft February 2022

The

Capability-Based Command Protocol Specification

Version 1.0 Draft

February 2022

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1 About this Document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Conceptual Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 CBCP Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Hosts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.4 Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.5 Capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Functional Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.1 Implementation Requirements and Recommendations . . . . . . . . . . . . . . 6

3.2 System Requirements and Recommendations . . . . . . . . . . . . . . . . . . . 6

3.3 Data Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.4 Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

QuasiOS ApS Page 1 of 24



Version 1.0 Draft February 2022

3.5 Connection and Handshake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.6 Command Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5 Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

6 Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

7 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

A CBCP Configuration File Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

List of Figures

1 CBCP in the OSI Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Command Packet Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Command Response Packet Format . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Four-Way Handshake Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5 Handshake: Initial Client Handshake Request . . . . . . . . . . . . . . . . . . . 12

6 Handshake: Server’s Response to Initial Handshake Request . . . . . . . . . . . 12

7 Handshake: Client Challenge Proof . . . . . . . . . . . . . . . . . . . . . . . . . 13

8 Handshake: Server Sends Client ID . . . . . . . . . . . . . . . . . . . . . . . . . . 13

9 CBCP Connection State Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

List of Tables

1 Data About Self . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Data About Each Interface Hosted by Self . . . . . . . . . . . . . . . . . . . . . . 8

3 Data About Each Remote Interface Used by Self . . . . . . . . . . . . . . . . . . 8

4 Data Corresponding to a Capability . . . . . . . . . . . . . . . . . . . . . . . . . 9

QuasiOS ApS Page 2 of 24



Version 1.0 Draft February 2022

1. Introduction

The Capability-Based Command Protocol (CBCP) is an application layer host-to-host commu-

nication protocol. It is intended for well-defined networks where the identities and possible

interactions of connected hosts are known. In CBCP, an interaction implies a client issuing

a command to a server. The server only accepts the command if the client has a capability

that grants access to the command in question. Capabilities in CBCP are based on extended

password capabilities described in [1]. CBCP ensures confidentiality, integrity and authen-

ticity using concepts from both public and symmetric key cryptography. CBCP addresses

availability by limiting the amount of work being done for malformed or malicious packets.

1.1. About this Document

The rest of Section 1 motivates the creation of the CBCP and explains the scope of the

protocol. Section 2 covers the broader concepts that underpin the design of CBCP. Section

3 specifies the functional aspects of the protocol such as packet formats and preconditions.

Possible future work is outlined in Section 4.

1.2. Motivation

Cyber security has become increasingly important to the industrial sector with the advance of

Industry 4.0, which introduces ever more connectivity and automation. This shift in paradigm

has put the vulnerability of industrial networks under scrutiny. Policies to address cyber secu-

rity in the past have often involved physical partioning of business- and industrial networks.

However, such policies are mostly incompatible with the goals of Industry 4.0.

To address these circumstatnces, CBCP has been designed to facilitate Industry 4.0 by taking

advantage of the fact that industrial networks can often be well-defined, i.e., the identities

and possible interactions of connected hosts are known. It does so by requiring a formal

specification of the network. This network specification serves as a basis for generating the

appropriate public-private key pairs to ensure authenticity in all communication in addition

to capabilities used to limit which host-to-host iteractions are possible.

Flexibility has played a role in the design of the CBCP as it can interoperate with multiple

underlying network transport protocols. Figure 1 shows where CBCP fits in the Open Systems

Interconnection (OSI) Model.

QuasiOS ApS Page 3 of 24



Version 1.0 Draft February 2022

(e.g. 1000Base-T) – Physical Layer

(e.g. Ethernet) – Data Link Layer

(e.g. IP) – Network Layer

(e.g. TCP) – Transport Layer

CBCP – Session Layer

CBCP – Presentation Layer

CBCP – Application Layer

Figure 1: CBCP in relation to the OSI Model. Note that CBCP is neither dependent on TCP, IP,

nor Ethernet; any underlying network implementation fulfilling the requirements of CBCP

would suffice. In the OSI model, the CBCP takes on responsibilities relevant to the session

layer, presentation layer, and application layer.

1.3. Scope

As noted above, the CBCP has been designed to provide increased cyber security in closed,

mostly static, networks – e.g. a factory floor with robots and other machines needing to

coordinate in a well-defined way. CBCP additionally aids in documenting and reasoning

about the network by making the identity and capabilities of every participating host explicit.

2. Conceptual Model

This section covers the broader concepts that underpin the design of CBCP.

2.1. CBCP Network

The CBCP works in a network of connected machines. Each machine is a host offering zero or

more operations grouped into interfaces. Hosts can command other hosts to perform specific

operations by sending a command. The commands are only accepted on the serving host if

the client host includes a valid capability (see Section 3.6 about command validation).

QuasiOS ApS Page 4 of 24



Version 1.0 Draft February 2022

2.2. Hosts

In a CBCP network, hosts communicate in a point-to-point manner. Every host can function

both as a client and a server simultaneously. When a given CBCP network configuration has

a pair of interacting hosts, it is the responsibility of the client to initiate the connection.

This happens through a four-way handshake protocol described in Section 3.5.

2.3. Interfaces

Interfaces define groups of related operations a server can perform when issued a command

by a client. They are comparable to the interfaces of objects in object oriented programming.

Access to specific operations are managed through capabilities. If the same set of permitted

commands is shared among multiple clients, they can share the same capability.

Associated with an interface is a revokation table of capability entries. Every valid capability

to a particular interface must map to one of the capability entries in this table.

A server is able to revoke some or all access rights of a capability via its associated entry in

the revokation table.

2.4. Commands

In CBCP, commands are requests sent (see Figure 2) by a client for a server to perform an

operation offered in one of the server’s served interfaces. A command can be accompanied

by an application-defined payload which can provide contextual data for the operation.

When the server has completed an operation it has been commanded to perform, it responds

to the client with confirmation of completion and optionally an application-defined payload

providing information about the result of carrying out the operation.

2.5. Capabilities

Conceptually, a capability corresponds with a set of permitted commands for a particular

interface along with a secret key used for validation.

The most permissive capability would be one where all commands of the interface were

permitted.

Capabilities are what clients use to prove that they are allowed to issue a particular command

at a server.

QuasiOS ApS Page 5 of 24



Version 1.0 Draft February 2022

3. Functional Specification

This section specifies the functional aspects of the CBCP, including conventions, sub-protocols,

as well as concrete network packet formats, implementation requirements and recommen-

dations.

3.1. Implementation Requirements and Recommendations

Implementations of the CBCP must provide the following aspects:

• Full duplex command issuing and handling. This implies that a host application must

be able to act simultaneously as a client and as a server.

• The ability to handle handshake requests at all times, see Section 3.5.

Implementations of the CBCP should provide the following aspects:

• The ability to revoke capabilities at runtime.

• The ability to look up hosts, interfaces, and commands by name.

• The ability as a command-issuing host to specify which capability to use whenmultiple

capabilities give access to the command in question.

3.2. System Requirements and Recommendations

The underlying transport layer must provide the following aspects:

• Reliable data transfer.

• Enough isolated communication channels to satisfy the requirement that each pairwise

connection between hosts has two isolated communication channels, one command

channel, and one control channel.

The computing platform must provide the following aspects:

• RSA encryption and decryption.

• AES encryption and decryption.

The computing platform should provide the following aspects:

• Safe storage of encryption keys and secrets. The degree of safety is intentionally left

unspecified; in general, the more critical the application, the stronger the emphasis on

this aspect should be.

QuasiOS ApS Page 6 of 24



Version 1.0 Draft February 2022

3.3. Data Requirements

This section specifies the data needed by implementations of the CBCP.

This data is expected to be generated in advance of the network becoming operational. Fu-

ture CBCP specifications may expect dynamic changes of this data (see Section 4).

The following tables describe the data from the perspective of a particular host denoted,

Self.

Data About Self

Host Name A name that uniquely identifies the host, Self. Must not ex-

ceed 256 characters in length.

Address(es) One or more transport-layer-specific addresses. For TCP,

this would likely be an IP-address and port number.

Public Key The public RSA key of self.

Private Key The private RSA key of self.

Own Interfaces Interfaces Hosted by Self. Table 2 specifies what data is

needed for each such interface.

Remote Interfaces What interfaces Self relies on at different hosts.

Capabilities Which capabilities Self owns. See Table 4 for a specification

of what data a capability corresponds to.

Table 1: Data About Self

QuasiOS ApS Page 7 of 24



Version 1.0 Draft February 2022

Data About Each Interface Hosted by Self

Interface Name A name that uniquely identifies the interface. Must not ex-

ceed 256 characters in length.

Capability Master Se-

cret

A 128-bit secret number used for validating capabilities for

this interface.

Command Name List An ordered list of names to commands this interface can

receive. The position of each command name should corre-

spond to the command ID that is transmitted in command

packets (see Figure 2).

Table 2: Data About Each Interface Hosted by Self

Data About Each Remote Interface Used by Self

Interface Name A name that uniquely identifies the interface. Must not ex-

ceed 256 characters in length.

Used Remote Com-

mands

The names, and command IDs of the remote commands

used in this remote interface. The amount of commands

must not exceed 64.

Table 3: Data About Each Remote Interface Used by Self

QuasiOS ApS Page 8 of 24



Version 1.0 Draft February 2022

Data Corresponding to a Capability

Permitted Commands The set of permitted commands represented as multiple bit

vectors which need to be bitwise AND-ed together. Each

bit vector is called a reduction sub-field. The bit position

(in little-endian bit ordering) in each bit vector corresponds

to the command ID in the interface. A 1-bit corresponds to

the command being permitted, a 0-bit corresponds to the

command not being permitted. Each reduction sub-field is

bitwise AND-ed together to produce the final set of permit-

ted commands.

Secret A secret derived from the permitted commands reduction

sub-fields. This prevents unnoticable tampering with the

reduction sub-fields. See Section 3.6 for how this is used in

the verification of commands.

Table 4: Data Corresponding to a Capability

QuasiOS ApS Page 9 of 24



Version 1.0 Draft February 2022

3.4. Commands

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Client ID Reserved, must be 0

Initial Vector

GCM Tag



Unencrypted

Header

Client ID Sequence Number

Client Group ID Interface ID

Capability ID Payload Length

Command ID Reserved, must be 0

Capability Reduction Subfield 1

...
...

Capability Reduction Subfield 4

Secret



AES

Encrypted

Header

. . . Payload . . .

 AES Encrypted

Payload

Figure 2: Command Packet Format. The numbers 0-31 at the top of this diagram denotes the

bit offset of the column below. The full width of the diagram corresponds to 32 bits.

QuasiOS ApS Page 10 of 24



Version 1.0 Draft February 2022

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Sequence Number Payload Length

. . . Response Payload . . .


AES

Encrypted

Figure 3: Command Response Packet Format. The numbers 0-31 at the top of this diagram

denotes the bit offset of the column below. The full width of the diagram corresponds to 32

bits.

3.5. Connection and Handshake

For any pair of hosts needing to interact, a point-to-point connection needs to exist between

them. It is always the responsebility of the client to establish the connection. Establishing a

CBCP-connection happens via a four-way handshake illustrated in Figure 4.

Client Server

Handshake Request + Challenge 1 (Figure 5)

Challenge 1 Proof + Challeng
e 2 (Figure 6)

Challenge 2 Proof + Challenge 3 (Figure 7)

Challenge 3 Proof + Client ID
(Figure 8)

Figure 4: Four-Way Handshake Sequence

QuasiOS ApS Page 11 of 24



Version 1.0 Draft February 2022

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Major Version Minor Version

Challenge 1

Client Name Length

. . . Client Name . . .



RSA

encrypted

using

server’s

public key

Figure 5: The initial handshake request sent by the client. It establishes the version of CBCP

to be used for further communication. ‘Challenge 1’ represents a decryption challenge that

the server must proof it can decypt by replying with the decrypted value. Finally, the name

of the client is provided for the server to look up the data associated with the client. The

numbers 0-31 at the top of this diagram denotes the bit offset of the column below. The full

width of the diagram corresponds to 32 bits.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Challenge 1 Proof

Challenge 2



RSA

encrypted

using

client’s

public key

Figure 6: The server’s response to the initial handshake request by the client. The numbers

0-31 at the top of this diagram denotes the bit offset of the column below. The full width of

the diagram corresponds to 32 bits.

QuasiOS ApS Page 12 of 24



Version 1.0 Draft February 2022

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Challenge 2 Proof

Challenge 3



RSA

encrypted

using

server’s

public key

Figure 7: The client proofs the new challenge by the server and provides a third challenge.

The numbers 0-31 at the top of this diagram denotes the bit offset of the column below. The

full width of the diagram corresponds to 32 bits.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Challenge 3 Proof

Client ID at Server



RSA

encrypted

using

client’s

public key

Figure 8: Server responds with the ID the client is supposed to identify itself with when

issuing commands. The numbers 0-31 at the top of this diagram denotes the bit offset of the

column below. The full width of the diagram corresponds to 32 bits.

CBCP Connection A connection in CBCP is always point-to-point and has two isolated com-

munication channels: One for commands (and responses to those commands), and one for

control messages like the handshake packets. These channels are referred to as the com-

mand channel and the control channel.

If a pair of hosts are mutually both client and server, the first host to reach the other with a

handshake request packet becomes the initiator of the handshake.

Once a connection is setup, there is no distinction between client and server.

Handshake Outcome The outcome of the handshake is a shared secret key used to encrypt

all commands and response packets. This key is a 128-bit AES key.

The connection state diagram in Figure 9 illustrates under which circumstances a handshake

needs to be made.

QuasiOS ApS Page 13 of 24



Version 1.0 Draft February 2022

Client Down

Server Down

Client Up

Server Down

Client Down

Server Up

Client Up

Server Up

Client starts handshake

Command times out,

client invalidates old connection

Client starts handshake,

server replaces old connection

Client drops connection

Server drops conncetion

Figure 9: CBCP Connection State Diagram

When the network initially goes live, there are no connections between any pair of hosts;

hence, for every client-server pair, the clients will initiate handshakes.

3.6. Command Validation

This section lists a C (ISO/IEC 9899:1999) reference implementation of the command vali-

dation procedure as well as the procedure for computing the capability secrets.

1 #include <stdint.h> /* explicitly sized integer types */
2 #include <stdbool.h> /* bool */
3 #include <string.h> /* memcpy, memcmp */
4 #include <assert.h> /* assert */
5 #include <openssl/aes.h> /* AES_set_encrypt_key, AES_ecb_encrypt */
6

7 #define REDUCTION_SUBFIELD_COUNT 4
8 #define KEY_BIT_COUNT 128
9

10 typedef struct {
11 /* sizeof(Secret) == AES encryption block size */
12 uint8_t bytes[16];
13 } Secret;
14

15 typedef struct {
16 uint64_t subfields[REDUCTION_SUBFIELD_COUNT];
17 } Reduction_Field;

QuasiOS ApS Page 14 of 24



Version 1.0 Draft February 2022

18

19 typedef struct {
20 uint16_t id;
21 Secret secret;
22 Reduction_Field reduction_field;
23 } Capability;
24

25 Secret compute_secret(Secret interface_master_secret, Capability capability) {
26 Secret result = {0};
27 Secret id_as_secret = {0};
28

29 memcpy(&id_as_secret, &capability.id, sizeof(capability.id));
30

31 AES_KEY key;
32 AES_set_encrypt_key(
33 (const uint8_t *)&interface_master_secret,
34 KEY_BIT_COUNT,
35 &key);
36

37 AES_ecb_encrypt(
38 (const uint8_t *)&id_as_secret,
39 (uint8_t *)&result,
40 &key,
41 AES_ENCRYPT);
42

43 for (int i = 0; i < REDUCTION_SUBFIELD_COUNT; ++i) {
44 uint64_t reduction_subfield = capability.reduction_field.subfields[i];
45

46 /* Early-out of loop if subfield is all one bits */
47 if (~reduction_subfield == 0) {
48 break;
49 }
50

51 /* Copy reduction subfield into a big enough buffer */
52 Secret reduction_subfield_as_secret = {0};
53

54 memcpy(&reduction_subfield_as_secret,
55 &reduction_subfield,
56 sizeof(reduction_subfield));
57

58 /* Set partial result as new key */
59 AES_set_encrypt_key(
60 (const uint8_t *)&result,
61 KEY_BIT_COUNT,
62 &key);
63

64 /* Encrypt lcrypto */
65 AES_ecb_encrypt(
66 (const uint8_t *)&reduction_subfield_as_secret,
67 (uint8_t *)&result,
68 &key,
69 AES_ENCRYPT);
70 }
71

72 return result;

QuasiOS ApS Page 15 of 24



Version 1.0 Draft February 2022

73 }
74

75 bool validate_command(
76 uint8_t command_id,
77 Capability capability,
78 Secret interface_master_secret,
79 uint64_t interface_command_field
80 ) {
81 assert(command_id < 64);
82

83 uint64_t command_field = (1 << command_id);
84

85 uint64_t final_field = command_field;
86

87 /* Bitwise AND */
88 final_field &= interface_command_field;
89

90 for (int i = 0; i < REDUCTION_SUBFIELD_COUNT; ++i) {
91 final_field &= capability.reduction_field.subfields[i];
92 }
93

94 if (final_field == 0) {
95 /* Command not permitted */
96 return false;
97 }
98

99 /*
100 ** Validate reduction field by recomputing the secret and
101 ** checking that it comes out the same as `capability.secret`.
102 */
103

104 Secret computed_secret = compute_secret(interface_master_secret, capability);
105

106 if (memcmp(&computed_secret, &capability.secret, sizeof(Secret)) != 0) {
107 /* The computed secret did not match the secret in the capability */
108 return false;
109 }
110

111 /* Command permitted */
112 return true;
113 }

4. Future Work

Type safe interface specification: Instead of only providing names of commands, data types

for the command- and response payloads could likewise be specified in an appropriate in-

terface definition language.

Dynamic network updates: Updates to the network configuration could happen incremen-

QuasiOS ApS Page 16 of 24



Version 1.0 Draft February 2022

tally. Then differences from the previous configuration could be sent to the affected hosts as

updates that could be applied at runtime.

The abilitiy for hosts to broadcast commands to groups of hosts. Different communication

methods should in general be explored; in particular, event-driven publisher/subscriber com-

munication should be considered for enabling more decoupled network configurations.

A distinction between long and short running commands with the purpose of responding to

the client at the onset of long running commands so it does not need a long time out.

5. Acronyms

CBCP

Capability-Based Command Protocol. 3–7, 11, 13, 18

IP

Internet Protocol. 4, 7

OSI

Open Systems Interconnection. 3, 4

TCP

Transmission Control Protocol. 4, 7

6. Glossary

authenticity

A security attribute that implies that the identity of hosts in the network can be verified

and thus trusted. 3

availability

A security attribute that implies that services are accessible to authenticated users

when needed. 3

QuasiOS ApS Page 17 of 24



Version 1.0 Draft February 2022

capability

A set of access rights associated with a particular protected entity. In CBCP, the entity

being protected is an interface to a collection of operations. 18, 19

capability entry

An entry of a revokation table that a particular capability maps to. It contains informa-

tion sufficient for revoking some or all access rights of the capability that maps to it.

5, 20

client

A host that has license to one or more capabilities offered by one or more servers. 3,

5, 6, 11, 13, 14, 20

command

See Section 2.4.

18

command channel

An isolated communication channel dedicated to commands and responses to those

commands. 6, 13

command ID

An 8-bit number that uniquely identifies a particular command in an interface. Used in

the command packet format (see Figure 2). 8–10

computing platform

An environment in which software is executed. This includes the operating system,

available software libraries, and capabilies of the hardware. 6

confidentiality

A security attribute that implies that information shared between trusted parties re-

mains private to those trusted parties. 3

control channel

An isolated communication channel dedicated to meta control messages like hand-

shake packets. 6, 13

QuasiOS ApS Page 18 of 24



Version 1.0 Draft February 2022

full duplex

An attribute of a two-party communication channel implying that both participants

can both send and receive simultaneously. 6

host

A computer connected to the network. Read about the roles of a host in Section 2.2.

17–20

industry 4.0

A common abbreviation for The Fourth Industrial Revolution – speculated to be the

next big advancement of the modern industrialized world. Industry 4.0 implies in-

creased automation through interconnected production machinery and internet con-

nectivity for remote monitoring and management. 3

integrity

A security attribute that implies that sent messages arrive at the recipient unchanged.

3

interface

See Section 2.3.

18, 20

license

A cryptographic entity that proofs ownership of a capability. 18

must

Used in this specification to indicate that something is a requirement. 6

packet

A unit of data transmitted over the network. 3

point-to-point

An attribute of a network connection implying that only two hosts will be able to com-

municate via the connection. 5, 11, 13

QuasiOS ApS Page 19 of 24



Version 1.0 Draft February 2022

revokation table

A table of capability entries belonging to an interface at a particular server. 5, 18

server

A host that offers one or more interfaces to one or more clients. 3, 5, 6, 13, 14, 18, 20

should

Used in this specification to indicate that something is a recommendation. 6

7. References

[1] Lanfranco Lopriore. “Access right management by extended password capabilities.” In:

International Journal of Information Security 17.5 (2018), pp. 603–612.

QuasiOS ApS Page 20 of 24



Version 1.0 Draft February 2022

A. CBCP Configuration File Format

(*

GRAMMAR FOR CAPABILITY-BASED COMMAND PROTOCOL CONFIGURATION FILES

EBNF variant defined in ISO/IEC 14977:1996(E)

Version 1.0

*)

CbcpConfiguration = VersionSection,

HostsSection,

[GroupsSection],

InterfacesSection,

ImplementsSection,

CapabilitiesSection ;

VersionTitle = "!", Cc, Bb, Cc, Pp ;

HostsTitle = "!", Hh, Oo, Ss, Tt, Ss ;

GroupsTitle = "!", Gg, Rr, Oo, Uu, Pp, Ss ;

InterfacesTitle = "!", Ii, Nn, Tt, Ee, Rr, Ff, Aa, Cc, Ee, Ss ;

ImplementsTitle = "!", Ii, Mm, Pp, Ll, Ee, Mm, Ee, Nn, Tt, Ss ;

CapabilitiesTitle = "!", Cc, Aa, Pp, Aa, Bb, Ii, Ll, Ii, Tt, Ii, Ee, Ss ;

VersionSection = {Space}, VersionSectionHeader, SpaceLine, Version, End ;

HostsSection = HostsTitle, End, [HostDefList], End ;

GroupsSection = GroupsTitle, End, [GroupDefList], End;

InterfacesSection = InterfacesTitle, End, [InterfaceDefList], End ;

ImplementsSection = ImplementsTitle, End, [ImplementsDefList], End ;

CapabilitiesSection = CapabilitiesTitle, End, [CapabilityDefList], {Space} ;

Version = VersionMajor, ".", VersionMinor ;

VersionMajor = "1" ;

VersionMinor = "0" ;

HostDefList = HostDef, {End, HostDef} ;

HostDef = HostName, Sep, HostAddressList ;

QuasiOS ApS Page 21 of 24



Version 1.0 Draft February 2022

HostAddressList = HostAddress, {Sep, HostAddress} ;

HostAddress = NetImplName, SubSep,

? Network Implementation Specific

String Not Containing "\n" ?;

GroupDefList = GroupDef, {End, GroupDef} ;

GroupDef = GroupName, Sep, HostName, {SubSep, HostName} ;

InterfaceDefList = InterfaceDef, {End, InterfaceDef} ;

InterfaceDef = InterfaceName, Sep, CommandNameList ;

ImplementsDefList = ImplementsDef, {End, ImplementsDef} ;

ImplementsDef = ServerName, Sep, InterfaceName, {SubSep, InterfaceName} ;

CapabilityDefList = CapabilityDef, {End, CapabilityDef} ;

CapabilityDef = ClientName, Sep,

ServerName, Sep,

InterfaceName, Sep,

CommandNameList ;

CommandNameList = CommandName, {SubSep, CommandName} ;

HostName = Name ;

GroupName = "@", Name ;

InterfaceName = Name ;

NetImplName = Name ;

CommandName = Name ;

ClientName = HostName | GroupName ;

ServerName = HostName | GroupName ;

Name = NameBoundsChar, [{NameMiddleChar}, NameBoundsChar] ;

NameBoundsChar = Letter | Digit | "-" | "_" | "+" | "." | "/" ;

NameMiddleChar = NameBoundsChar | " " ;

SubSep = {SpaceLine}, ",", {SpaceLine} ;

QuasiOS ApS Page 22 of 24



Version 1.0 Draft February 2022

Sep = {SpaceLine}, ";", {SpaceLine} ;

End = {Space}, "\n", {Space} ;

Space = SpaceLine | SpaceLineEnd ;

SpaceLineEnd = "\n" | "\r" | "\v" | "\f" ;

SpaceLine = " " | "\t" ;

Digit = "0" | "1" | "2" | "3" | "4"

| "5" | "6" | "7" | "8" | "9" ;

Letter = Aa | Bb | Cc | Dd | Ee | Ff | Gg | Hh | Ii | Jj

| Kk | Ll | Mm | Nn | Oo | Pp | Qq | Rr | Ss | Tt

| Uu | Vv | Ww | Xx | Yy | Zz ;

Aa = "a" | "A" ;

Bb = "b" | "B" ;

Cc = "c" | "C" ;

Dd = "d" | "D" ;

Ee = "e" | "E" ;

Ff = "f" | "F" ;

Gg = "g" | "G" ;

Hh = "h" | "H" ;

Ii = "i" | "I" ;

Jj = "j" | "J" ;

Kk = "k" | "K" ;

Ll = "l" | "L" ;

Mm = "m" | "M" ;

Nn = "n" | "N" ;

Oo = "o" | "O" ;

Pp = "p" | "P" ;

Qq = "q" | "Q" ;

Rr = "r" | "R" ;

Ss = "s" | "S" ;

Tt = "t" | "T" ;

Uu = "u" | "U" ;

QuasiOS ApS Page 23 of 24



Version 1.0 Draft February 2022

Vv = "v" | "V" ;

Ww = "w" | "W" ;

Xx = "x" | "X" ;

Yy = "y" | "Y" ;

Zz = "z" | "Z" ;

QuasiOS ApS Page 24 of 24


	Introduction
	About this Document
	Motivation
	Scope

	Conceptual Model
	CBCP Network
	Hosts
	Interfaces
	Commands
	Capabilities

	Functional Specification
	Implementation Requirements and Recommendations
	System Requirements and Recommendations
	Data Requirements
	Commands
	Connection and Handshake
	Command Validation

	Future Work
	Acronyms
	Glossary
	References
	CBCP Configuration File Format

